ASSOCIATION BETWEEN LEVEL OF SERUM FERRITIN AND OUTCOME OF PATIENTS OF STROKE

Pranjal Pankaj¹, Medha Das², Manish Kumar Singh³

HOW TO CITE THIS ARTICLE:

Pranjal Pankaj, Medha Das, Manish Kumar Singh. "Association between Level of Serum Ferritin and Outcome of Patients of Stroke". Journal of Evolution of Medical and Dental Sciences 2015; Vol. 4, Issue 12, February 09; Page: 2023-2036, DOI: 10.14260/jemds/2015/292

ABSTRACT: INTRODUCTION: Despite lot of researches in the field of stroke, accurate prognostication of an acute attack is difficult. Several prognostic factors like site of infarction, size of infarct, size of the vessel involved, Glasgow coma scale, level of cerebral edema, intracranial tension have been found significant in cerebral infarction. Similarly in cases of cerebral hemorrhage, CT calculated volume of hematoma, GCS, site of hemorrhage etc. are important. One of the prognostic indicators which has gained great clinical interest in recent times is the level of serum ferritin. Initially considered only as a stress response to stroke, serum ferritin now is under research as a prognostic indicator. AIMS AND OBJECTIVES: To correlate the levels of serum ferritin with early neurological deterioration and prognosis in patients of acute stroke. MATERIAL AND METHODS: A total of 50 patients of cerebrovascular accident presenting within 48hrs of symptom onset were included in the study and diagnosis of stroke was confirmed by CT scan. In vitro quantitative determination of ferritin in human serum was done within 48 hours of presentation by electro chemiluminescence immunoassay "ECLIA" in Elecsys and cobas e immunoassay analyser. Neurological assessment was done by Canadian stroke scale. **INCLUSION CRITERIA:** patients above 18 yrs. of age of both sexes with CT scan confirmed diagnosis of stroke presenting within 48 hrs of symptom onset **EXCLUSION CRITERIA**: Patient not fulfilling inclusion criteria and with history of recent infection or inflammation in the previous month, with history of malignancy and with anemia. **RESULTS:** level of serum ferritin has direct correlation with worse prognosis in patients of stroke. The mean level of serum ferritin in the group of clinically improved (87.01) was much lesser compared to the group clinically deteriorated or died (458.7) among patients of ischemic stroke. Similarly in hemorrhagic stroke it was 96.4 in improved group compared to 463.91 in deteriorated. Both the differences were statistically significant (p < 0.001) in both types of stroke. **CONCLUSION**: elevated serum ferritin is strongly associated with early neurological deterioration in patients of stroke and is a definite prognostic marker of acute stroke, ischemic or hemorrhagic an elevated serum ferritin (A marker of iron stores) herald more intensive management protocols and care for the patient as it can predict early neurological deterioration. Iron chelation therapy in acute stroke seems to be a strong theoretical possibility and further studies are required to investigate its role in treatment of stroke.

KEYWORDS: Stroke, serum ferritin, neurological outcome, prognosis.

INTRODUCTION: A Stroke or Cerebrovascular accident is defined as an abrupt onset neurological deficit attributable to a focal vascular cause. Thus the definition of stroke is clinical, and laboratory studies including brain imaging are required to support the diagnosis¹.Cerebrovascular disease is the third leading cause of death after heart diseases and cancer in developed countries and is now emerging as the commonest preventable life threatening neurological problem worldwide. It makes

an important contribution to morbidity and mortality in developed as well as developing countries. Improved detection and modification of risk factors could reduce the impact of this disease. Important non modifiable risk factors include age, gender, ethnicity and heredity. Modifiable risk factors include hypertension, cardiovascular disease, diabetes, hyperlipidemia, asymptomatic carotid stenosis, cigarette smoking and alcohol abuse. The protective effect of physical activity and moderate alcohol consumption was and further established as modifiable risk factors.¹

Despite lot of researches in the field of stroke, accurate prognostication of an acute attack is difficult. Several prognostic factors like site of infarction, size of infarct, size of the vessel involved, Glasgow coma scale, level of cerebral edema, intracranial tension have been found significant in cerebral infarction. Similarly in cases of cerebral hemorrhage, CT calculated volume of hematoma, GCS, site of hemorrhage etc. are important. Some of the upcoming prognostic indicators are under study e.g.; hyperglycemia in stroke, infection in stroke, TNFa or interleukins etc.

One of the prognostic indicators which have gained great clinical interest in recent times is the level of serum ferritin. Initially considered only as a stress response to stroke, serum ferritin now is under research as a prognostic indicator, the possible mechanisms of which are discussed under. This has also enhanced research in the therapeutic role of iron chelation in improving stroke prognosis. In most of the hospitals, nothing much can be done for stroke patients other than conservative management. Proving the therapeutic potential of iron chelation therapy will be a great advancement in the field of treatment of stroke.^{2,3,4,5}

AIMS AND OBJECTIVES:

- 1. To study the effect of concentration of serum ferritin on the outcome of patients of acute stroke.
- 2. To correlate the levels of serum ferritin with early neurological deterioration in patients of acute stroke.
- 3. Outcome of patients will be classified as clinical improvement, deterioration and death.

MATERIALS AND METHODS: A total of 50 patients of cerebrovascular accident presenting within 48hrs of symptom onset were included in the study and diagnosis of stroke was confirmed by CT scan. Neurological assessment was done by CANADIAN STROKE SCALE. Serum ferritin was performed within 48 hrs. of onset of symptoms. Neurological assessment was repeated on 6th day of admission by Canadian stroke scale. Patients were classified as clinical improvement, deterioration and death. In vitro quantitative determination of ferritin in human serum was done by electro chemiluminescence immunoassay "ECLIA" in Elecsys and cobas e immunoassay analyzer.

CANADIAN STROKE SCALE

			Date	
			Time	
Mentation	Level of Consciousness	Alert	3	
		Drowsy	1.5	
	Orientation	Oriented	1	
		Disoriented or Nonapplicable	0	
	Speech	Normal	1	
	-	Expressive Aphasia	0.5	
		Receptive Aphasia	0	
	Motor Functions:			
		Weakness:		
	Face:	None	0.5	
		Present	0	
	Arm: Proximal	None	1.5	
=		Mild	1	
fici		Significant	0.5	
Ď		Total	0	
A1 ive	Arm: Distal	None	1.5	
on		Mild	1	
Section A1 No Comprehensive Deficit		Significant	0.5	
	·	Total	0	
Ö	Leg: Proximal	None	1.5	
2		Mild	1	
1		Significant	0.5	
		Total	0	
	Leg: Distal	None	1.5	
		Mild	1	
		Significant	0.5	
		Total	0	
	Face:	Symmetrical	0.5	
sive		Asymmetrical	0	
hen A	Arms:	Equal	1.5	
Section A2 Comprehensive Deficit	Det	Unequal	0	
S I	Legs:	Equal	1.5	
Ŭ		Unequal	0	
		Total Score		

Inclusion Criteria:

- 1. Patient should be aged above 18 years.
- 2. Both sexes are included.
- 3. Diagnosis of CVA should be confirmed by CT scan.
- 4. Patient should present within 48 hrs. of onset of symptoms.

Exclusion Criteria:

- 1. Patient not fulfilling inclusion criteria.
- 2. Patients with history of recent infection or inflammation in the previous month.
- 3. Patient with history of malignancy.
- 4. Patients with anemia.

OBSERVATIONS:

Total sample size: 50. Males: 31. Females: 19. Age range: 26: 85.

	Ν	Percent
Ischemic	23	46
Hemorrhagic	27	54
Table 1. Etiologic Distribution of Dationts of Stroke		

Table 1 : Etiologic Distribution of Patients of Stroke

	Ischemic stroke	Hemorrhagic stroke	
No. of cases improved	16	15	
No. of cases deteriorated	7	12	
Total 23 27			

 Table 2 : Classification of total number of cases based on type and outcome

	Ν	Percent	
Males	14	60.86	
Females 9 39.14			
Table 3 : Sex Distribution of Patients of Ischemic Stroke			

	Ν	Percent	
Male	18	66.66	
Female	9	33.33	
Table 4 : Sex distribution of patients of hemorrhagic stroke			

Age range	Ν	
20-30	1	
31-40	1	
41-50	6	
51-60	7	
61-70	5	
71-80	2	
81-90	1	
Table 5: Age distribution of patients of ischemic stroke		

Age range	N
20-30	0
31-40	1
41-50	8
51-60	6
61-70	5
71-80	5
81-90	2
Table 6: Age distribution of	

patients in hemorrhagic stroke

	Ischemic stroke	Hemorrhagic stroke
Mean age of patients improved	59.75 yrs	64.53 yrs
Mean age of patients deteriorated 48.14 yrs 54.58 yrs		
Table 7: Mean age of patients among different groups		

	Mean serum ferritin	
Patients improved	87.01	
Patients deteriorated	458.70	
Table 8 : Mean serum ferritin of patients of ischemic stroke		

	MEAN SERUM FERRITIN	
Patients improved	96.44	
Patients deteriorated	463.91	
Table 9: Mean serum ferritin of patients of hemorrhagic stroke		

Mean	87.013125	
Median	52.44	
Standard deviation	73.53128284	
Range	238.2	
Minimum	20.2	
Maximum	258.4	
Largest(1)	258.4	
Smallest(1) 20.2		
Table 10 : Descriptive statistics of serum ferritin of patients of ischemic stroke who improved		

Mean	458.7014286
Median	416.16
Standard Deviation	145.4344779
Range	385
Minimum	321
Maximum	706
Largest(1)	706

Table 11 : Descriptive Statistics of Serum Ferritin of Patients of Ischemic Stroke who Deteriorated

Mean	96.44
Median	81.97
Standard Deviation	39.44262
Range	141.87
Minimum	20.13
Maximum	162
Largest(1)	162
Smallest(1)	20.13

Table 12 : Descriptive Statistics of Serum Ferritin of Patients of Hemorrhagic Stroke who Improved

Mean	463.9125	
Median	434.5	
Standard Deviation	181.2183165	
Range	604.15	
Minimum	173.85	
Maximum	778	
Largest(1)	778	

Table 13 : Descriptive Statistics of Serum Ferritin of Patients of Hemorrhagic Stroke who Deteriorated

	improved	deteriorated		
Mean	87.01313	458.701429		
Observations	16	7		
df	7			
t Stat	6.41268			
P(T<=t) two-tail	0.000363			
t Critical two-tail	2.364624			
Table 14 : T-test assuming unequal variances to compare means of serum ferritin of improved and deteriorated groups in ischemic stroke				

INFERENCE:

- There is statistically significant difference in means of the two groups with p<0.001.
- Mean serum ferritin in deteriorated patients is significantly higher than those who improved.

T-test assuming unequal variances to compare means of serum ferritin of improved and deteriorated patients of hemorrhagic stroke.

	Deteriorated	Improved
Mean	463.9125	96.44
Observations	12	15
df	12	
t Stat	6.895028	
P(T<=t) two-tail	1.66E-05	
t Critical two-tail	2.178813	
	Table 15	

INFERENCE:

- There is highly significant difference statistically in means of the two groups with p<0.001.
- Mean serum ferritin in deteriorated patients is significantly higher than those who improved.

Etiologic Distribution of Patients

Fig. 2: Graphical Representation of Classification of Cases Based on Type and Outcome

Fig. 3: Graphical representation of sex distribution of cases

Fig. 6: Line Diagram Comparing Serum Ferritin in Patients of Ischemic Stroke Based on Outcome

RESULTS: The total number of cases studied was 50. Out of the 50 cases studied 23 (46%) were ischemic and 27 (54%) were hemorrhagic. Among the 23 cases of ischemic stroke 14 (60.86%) were males and 9 (39.14%) were females. 16 out of 23 cases improved clinically on 6th day of assessment while 7 cases deteriorated. There was statistically insignificant difference between the mean age of the improved and deteriorated groups. Mean serum ferritin level of the group of patients improved was 85.01 and those deteriorated was 458.70. t-test assuming unequal variances to compare means of serum ferritin of improved and deteriorated groups in ischemic stroke shows that there is statistically significant difference in means of the two groups with p<0.001.Mean serum ferritin in deteriorated patients is significantly higher than those who improved.

Among the 27 cases of hemorrhagic stroke 18 (66.66%) were males and 9 (33.33%) were females. 15 out the 27 improved while 12 deteriorated. There was statistically insignificant difference between the mean age of the improved and deteriorated groups. Mean serum ferritin level of the group of patients improved was 96.44 and those deteriorated was 463.91. t-test assuming unequal

J of Evolution of Med and Dent Sci/eISSN-2278-4802, pISSN-2278-4748/Vol. 4/Issue 12/Feb 09, 2015 Page 2032

variances to compare means of serum ferritin of improved and deteriorated groups in hemorrhagic stroke shows that there is statistically significant difference in means of the two groups with p<0.001. Mean serum ferritin in deteriorated patients is significantly higher than those who improved.

DISCUSSION: This study shows that serum ferritin is an important independent risk factor of prognosis of stroke. High levels of serum ferritin correlate well with the early neurological deterioration of stroke patients. Therefore testing of serum ferritin can be helpful in identifying high risk patients.

As seen in the observations, the mean age of the patients in the improved and deteriorated groups is almost the same. Other risk factors are evenly distributed among both the groups. But the mean serum ferritin in the improved group was significantly lower than the group which deteriorated. This holds true in both ischemic and hemorrhagic stroke. Admission levels of serum ferritin were found to be significantly higher in patients who deteriorated in next 7 days.

Serum ferritin is a suitable index of the amount of cellular iron stores and, consequently, might be related to the availability of iron in the infarcted area.^{6,7} In brain tissue, most of the non heme iron is in the form of ferritin, which is localized in astrocytes and microglia.⁸Ferritin synthesis in brain cells may be induced in hypoxic acidosis⁹ or in response to oxidative stress to reduce the accumulation of reactive oxygen species .¹⁰Therefore, increased ferritin could be in part the result of a neuro protective mechanism with the aim of sequestering toxic-free iron in the ischemic brain.

During cerebral ischemia, free iron released from intracellular stores such as ferritin catalyzes the conversion of superoxide and hydrogen peroxide into the highly reactive toxic hydroxyl radical.^{11,12} Experimental data support a causal role of iron overload in ischemic brain and endothelial damage. Iron intake has been associated with larger infarct volumes, higher oxidative stress, glutamate release, and inflammatory response after permanent middle cerebral artery occlusion in the rat,¹³ whereas iron depletion or chelation reduces infarct size, brain edema, and metabolic failure in ischemia/reperfusion experimental stroke models.^{14,15}

In patients with acute ischemic stroke not treated with thrombolytic drugs, high serum ferritin values and high cerebrospinal fluid ferritin concentrations determined early after symptom onset have been associated with subsequent neurologic worsening, poor neurologic outcome, large infarct volume, and elevated concentrations of glutamate in blood.^{16,18} Serum ferritin levels are thought to be directly proportional to cellular iron stores and can be used to assess iron overload in the absence of inflammation, cancer, and infectious diseases.^{19,20}

As early as 1981, Sullivan proposed the "iron hypothesis,"²¹ suggesting that the lower incidence rates of ischemic heart disease in premenopausal women compared with men and the increase of ischemic heart disease rates in postmenopausal women were results of the rise in iron stores after cessation of menses, with oxidative imbalance as the central biologic mechanism. In the Fenton reaction, Fe (II) catalyzes the formation of extremely reactive hydroxyl radicals.

Interaction with lipids may initiate the formation of oxidized LDL that ultimately leads to the development of foam cells and progression of atherosclerosis.²² additionally, iron could also play a role in vascular disease by activating platelets via a protein kinase C mechanism.²³ Although its initial focus was on ischemic heart disease, the hypothesis may also apply to cerebrovascular disease. Another proposed mechanism by which iron may play a role in ischemic vascular disease, which might be more relevant to stroke risk, is through ischemia/reperfusion injury. During reperfusion after cerebral infarction, there is a marked increase in oxygen-radical production as well as a release

J of Evolution of Med and Dent Sci/eISSN-2278-4802, pISSN-2278-4748/Vol. 4/Issue 12/Feb 09, 2015 Page 2033

of iron ions, leading to progressive tissue damage and cellular death.²⁴ Because of its specific areas rich in iron, high amounts of polyunsaturated fatty acid side chains in membrane lipids, and low concentrations of antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, the brain may be especially vulnerable to oxidative stress.²⁵ So far, only a few articles have reported on the association between iron and the risk of stroke in population-based studies.²⁶⁻³¹

Taken together, these findings suggest that iron overload is associated with following;

- a. Poor early neurological outcome in stroke patients.
- b. Iron overload may offset the beneficial effect of thrombolytic therapy.
- c. Iron chelation therapy may be beneficial in acute stroke if serum ferritin is high.

Studies done previously in this field showed similar results. Milan et al, Stroke 2007; 38;90-95, Nov 2006 showed that increased body iron stores was associated with poor outcome in patients of ischemic stroke after thrombolytic therapy. Mehdirratta M, Kumar S, Hackney D, Schlaud G, Selim M, Stroke 2008;39;1165-1170,2008 showed positive association between serum ferritin level and perihematoma edema volume in patients of spontaneous intracerebral hemorrhage. Millerot-Serrerot et al, neurochemistry international Journal, reported similar results in ischemic stroke.

In summary, patients with stroke with increased serum ferritin concentrations have a higher risk of poor clinical outcome, hemorrhagic transformation, and brain edema than patients with low ferritin values. These findings suggest that iron overload may counterbalance the benefits of thrombolytic therapy observed in patients with low ferritin levels. If these results are confirmed in future studies, iron chelators or free radical trapping agents should be used to reduce the neurotoxic effects of iron in patients with acute ischemic stroke and those who are treated with thrombolytic therapy.

CONCLUSION: A number of evidence has suggested that elevated serum ferritin (A marker of increased body iron stores) is a definite prognostic marker of acute stroke. An elevated serum ferritin herald more intensive management protocols and care for the patient as it can predict early neurological deterioration. Secondly, it can help in decision making regarding thrombolytic therapy. Patients can be classified as those who will be benefited or not from the thrombolytic therapy. Those with elevated serum ferritin will have more chances of deterioration in post-thrombolysis period. Thirdly, iron chelation therapy can actually improve the prognosis of stroke. Many studies are on to prove actual therapeutic efficacy of iron chelation therapy (Desferrioxamine and defepirome) in acute stroke. But this study at least shows its theoretical possibility. Strict thrombolysis protocols, late presentation of patients after the crucial period of first three hours when thrombolysis can be performed and delay in radiological diagnosis due to lack of facilities does not leave much for the clinician to do in these cases except for conservative management. iron chelation therapy, if proved to be beneficial in future can take us a big leap forward in the management of acute stroke.

REFERENCES:

- 1. Mehdiratta M at al, Stroke. 2008 Apr; 39(4): 1165-70. doi: 10.1161/STROKEAHA.107.501213
- 2. Emile Millerot-Serrurot,Nathalie Bertrand,Claude Mossiat,Philippe Faure,Anne priget-Tessier, Neurochemistry International.

J of Evolution of Med and Dent Sci/ eISSN- 2278-4802, pISSN- 2278-4748/ Vol. 4/ Issue 12/Feb 09, 2015 Page 2034

- 3. Herbert V, Jayatilleke E, Shaws, Rosman A S, Giardina P, Grady R W, Bowman B, Gunter E W, Serum Ferritin Iron,a new test,measures human body iron stores unconfounded by inflammation. Stem cells;1997;291-296.
- 4. Walters G O,Miller F M,Worwood M.Serum ferritin concentrations & iron strores in normal subjects J Clin Pathal.1973;26:770-772
- 5. Herbert V, Jayatilleke E, Shaw S, Rosman AS, Giardina P, Grady RW, Bowman B, Gunter EW. Serum ferritin iron, a new test, measures human body iron stores unconfounded by inflammation. Stem Cells. 1997;15: 291–296.
- 6. Walters GO, Miller FM, Worwood M. Serum ferritin concentrations and iron stores in normal subjects. J Clin Pathol. 1973;26:770 –772.
- 7. Connor JR, Menzies SL, St. Martin SM, Mufson EJ. Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. J Neurosci Res. 1990;27:595–611.
- 8. Qi Y, Jamindar M, Dawson G. Hypoxia alters iron homeostasis and induces ferritin synthesis in oligodendrocytes. J Neurochem. 1995;64:2458–2464.
- 9. Orino K, Lehman L, Tsuji Y, Ayaki H, Torti SV, Torti FM. Ferritin and the response to oxidative stress. Biochem J. 2001;357:241–247.
- 10. Selim MH, Ratan RR. The role of iron neurotoxicity in ischemic stroke. Ageing Research Reviews. 2004; 3:345–353.
- 11. Reif DW. Ferritin as a source of iron for oxidative damage. Free RadicBiol Med. 1992;12:417–427.
- 12. Castellanos M, Puig N, Carbonell T, Castillo J, Martı'nez JM, Rama R, Da'valos A. Iron intake increases infarct volume after permanent middle cerebral artery occlusion in rats. Brain Res. 2002;952:1–6.
- 13. Patt A, Horesh IR, Berger EM, Harken AH, Repine JE. Iron depletion or chelation reduces ischemia/reperfusion-induced edema in gerbil brains.J Pediatr Surg. 1990;25:224 –228.
- 14. Davis S, Helfaer MA, Traystman RJ, Hum PD. Parallel antioxidant and antiexcitotoxic therapy improves outcome after incomplete global cerebral ischemia in dogs. Stroke. 1997;28:198 –205.
- 15. Davalos A, Fernandez-Real JM, Ricart W, Soler S, Molins A, Planas E, Genis D. Iron-related brain damage in acute ischemic stroke. Stroke. 1994;25:1543–1546.
- 16. Davalos A, Castillo J, Marrugat J, Ferna'ndez-Real JM, Armengou A, Cacabelos P. Rama R. Body iron stores and early neurological deterioration in acute cerebral infarction. Neurology. 2000;54:1568–1574.
- 17. Erdemoglu AK, Ozbakir S. Serum ferritin levels and early prognosis of stroke. Eur J Neurol. 2002;9:633–637.
- 18. Herbert V, Jayatilleke E, Shaw S, Rosman AS, Giardina P, Grady RW, Bowman B, Gunter EW. Serum ferritin iron, a new test, measures human body iron stores unconfounded by inflammation. Stem Cells. 1997;15: 291–296.
- 19. Walters GO, Miller FM, Worwood M. Serum ferritin concentrations and iron stores in normal subjects. J Clin Pathol. 1973;26:770 –772.
- 20. Sullivan JL. Iron and the sex difference in heart disease risk. Lancet. 1981;1:1293–1294.
- 21. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989;320:915–924.

- 22. Pratico D, Pasin M, Barry OP, Ghiselli A, Sabatino G, Iuliano L, FitzGerald GA, Violi F. Irondependent human platelet activation and hydroxyl radical formation: involvement of protein kinase C. Circulation. 1999;99:3118–3124.
- 23. White BC, Sullivan JM, DeGracia DJ, O'Neil BJ, Neumar RW, Grossman LI, Rafols JA, Krause GS. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci. 2000;179:1–33.
- 24. Halliwell B, Reactive oxygen species and the central nervous system. J Neurochem. 1992; 59:1609 –1623.
- 25. Knuiman MW, Divitini ML, Olynyk JK, Cullen DJ, Bartholomew HC. Serum ferritin and cardiovascular disease: a 17-year follow-up study in Busselton, Western Australia. Am J Epidemiol. 2003;158:144–149.
- 26. Gillum RF, Sempos CT, Makuc DM, Looker AC, Chien CY, Ingram DD. Serum transferrin saturation, stroke incidence, and mortality in women and men: the NHANES I Epidemiologic Follow-up Study. National Health and Nutrition Examination Survey. Am J Epidemiol. 1996;144:59–68.
- 27. Erdemoglu AK, Ozbakir S. Serum ferritin levels and early prognosis of stroke. Eur J Neurol. 2002;9:633-637.
- 28. Davalos A, Castillo J, Marrugat J, Fernandez-Real JM, Armengou A, Cacabelos P, Rama R. Body iron stores and early neurologic deterioration in acute cerebral infarction. Neurology. 2000;54:1568 1574.
- 29. Davalos A, Fernandez-Real JM, Ricart W, Soler S, Molins A, Planas E, Genis D. Iron-related damage in acute ischemic stroke. Stroke. 1994;25: 1543–1546.
- 30. Roest M, van der Schouw YT, de Valk B, Marx JJ, Tempelman MJ, de Groot PG, Sixma JJ, Banga JD. Heterozygosity for a hereditary hemochromatosis gene is associated with cardiovascular death in women. Circulation. 1999;100:1268 –1273.
- 31. Njajou OT, Hollander M, Koudstaal PJ, Hofman A, Witteman JC, Breteler MM, van Duijn CM. Mutations in the hemochromatosis gene (HFE) and stroke. Stroke. 2002;33:2363–2366.

AUTHORS:

- 1. Pranjal Pankaj
- 2. Medha Das
- 3. Manish Kumar Singh

PARTICULARS OF CONTRIBUTORS:

- 1. Assistant Professor, Department of General Medicine, Rama Medical College & Hospital, Kanpur.
- 2. Assistant Professor, Department of Anatomy, Rama Medical College & Hospital, Kanpur.
- Assistant Professor, Department of General Medicine, Rama Medical College & Hospital, Kanpur.

NAME ADDRESS EMAIL ID OF THE CORRESPONDING AUTHOR:

Dr. Pranjal Pankaj, Assistant Professor, Department of General, Medicine, Rama Medical College, Mandhana, Kanpur. E-mail: drpranjalmed@rediffmail.com

> Date of Submission: 17/01/2015. Date of Peer Review: 19/01/2015. Date of Acceptance: 30/01/2015. Date of Publishing: 07/02/2015.