CLINICOPATHOLOGICAL STUDY OF LIVER ABSCESS IN EASTERN INDIAN POPULATION

Himansu Roy¹, Ashish Ranjan²

¹Associate Professor, Department of General Surgery, Medical College and Hospital, Kolkata, West Bengal, India. ²Senior Resident, Department of General Surgery, Islampur SS/SD Hospital, Uttar Dinajpur, West Bengal, India.

ABSTRACT

BACKGROUND

A descriptive study of Liver abscess is defined as collection of purulent material in liver parenchyma. It could be amoebic, pyogenic, infected hydatid, traumatic or ascaridal. It is a burning problem in tropical nations with often lethal consequences and diagnostic/therapeutic challenges.

This study aims to find out the demographic distribution, different modes of presentations, risk factors association, alteration of various laboratory and radiological investigations in diagnosis of liver abscess and responses to standard institutional management strategies.

MATERIALS AND METHODS

Medical records were taken by preformed case, Proforma. Descriptive statistics were used and analysed by SPSS software.

RESULTS

3/4th of cases belonged to 4th to 6th decade. Males were more commonly affected than females. Alcoholism was the most consistent risk factor followed by diabetes mellitus. Most common presenting symptom and sign were abdominal pain and abdominal tenderness in right hypochondriac region respectively. Most common aetiology of liver abscess was amoebic followed by mixed amoebic and pyogenic infections. The most common organisms obtained from pus C/S from liver abscess were Enterococcus spp. and Escherichia coli. Abnormal chest x-ray findings were recorded in > 50% of cases. USG showed majority of cases had large, solitary liver abscess in right lobe of liver. Most common complication observed was intraabdominal rupture of liver abscess, for which open surgical drainage was performed.

CONCLUSION

Recurrence was observed more following conservative management than other modalities.

KEY WORDS

Liver Abscess, Pyogenic Abscess, Amoebic Abscess, Percutaneous Drainage, Recurrence.

HOW TO CITE THIS ARTICLE: Roy H, Ranjan A. Clinicopathological study of liver abscess in eastern Indian population. J. Evolution Med. Dent. Sci. 2018;7(39):4307-4312, DOI: 10.14260/jemds/2018/960

BACKGROUND

- A descriptive study of Liver is the organ most subjected to the development of abscess. Liver abscess accounts for 48% of all visceral abscesses.
- India has 2nd highest incidence of liver abscess in the world.⁽¹⁾
- Liver abscess associated with mortality upto 20%.⁽²⁾
- Three major forms of liver abscess are:
 - Pyogenic- 3/4th of liver abscess in developed countries.
 - Amoebic- 2/3rd of liver abscess in developing countries.
 - Fungal Less common.
- In the recent past, the incidence of liver abscess has increased.
- There has been a changing trend in demographic presentation, clinical profile, microbiological aetiology, management strategies and outcomes of patients diagnosed with liver abscess.

'Financial or Other Competing Interest': None.
Submission 21-06-2018, Peer Review 25-07-2018,
Acceptance 01-08-2018, Published 24-09-2018.
Corresponding Author:
Dr. Ashish Ranjan,
Department of Horticulture (Veg. and Flori.)
Bihar Agricultural University,

E-mail: drashishranjan2209@gmail.com DOI: 10.14260/jemds/2018/960

Sabour, Bhagalpur-813210, India.

 The concept of the present study is to find out the demographic distribution, different modes of presentations, risk factors association, alteration of various laboratory and radiological investigations in diagnosis of liver abscess and responses to standard institutional management strategies.

Objectives/ Primary Objective To Study Liver Abscess patients with respect to-

- 1. Demographic profile of patients.
- 2. Spectrum of clinical presentations.
- 3. Risk factors association.
- Alteration in various blood and radiological investigations.
- 5. Bacteriological and serological characteristics.

Secondary Objective

To evaluate the response to standard institutional management strategies.

MATERIALS AND METHODS

- Place of study: Medical college and Hospital, Kolkata.
- Duration of study: January 2016 to June 2017.
- Design of study: A descriptive study.
- Study Population: Indoor patients of Liver Abscess admitted in Department of General Surgery, Medical College and Hospital, Kolkata.

Statistical Analysis

The qualitative data was expressed by Fisher's test, Independent t-test. For statistical analysis, SPSS software version 25.0 was used.

Inclusion Criteria

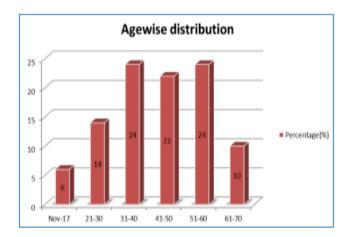
- All cases of liver abscess diagnosed clinically and/or ultrasonographically.
- All cases of bacterial and parasitic liver abscess.

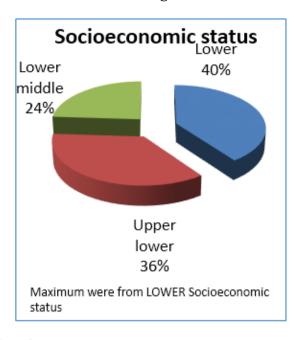
Exclusion Criteria

- Traumatic liver abscess.
- Liver abscess associated with liver malignancy.

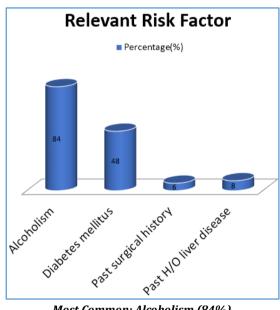
Sample Size

The descriptive study was carried out in the Medical College and Hospital, Kolkata where a total of 50 patients' based on previous year records were taken. Sample size was taken for convenience.

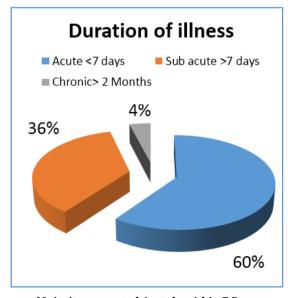

Data Analysis


- By following standard statistical protocols, all data will collected and analysed to evaluate clinicopathological aspects and response to standard institutional management strategies.
- Continuous data was summarised as Mean ± SD (standard deviation of the mean), while categorical data was represented in numbers and percentages. Analyses were performed on SPSS software (Windows version 17.0).

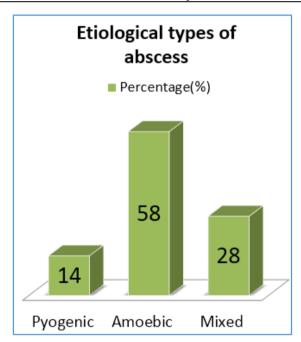
RESULTS


Demographic Features

There were 45 (90%) males and 5 (10%) females.



Clinical History

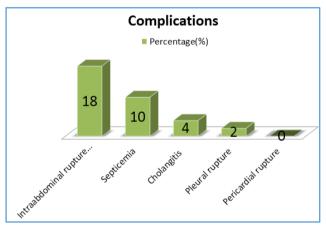

Most Common: Alcoholism (84%)

Majority presented Acutely within 7 Days

Symptoms and Signs	Number (N)	Percentage (%)		
Pain in abdomen	50	100		
Fever (> 38.5°C)	47	94		
Abdominal tenderness	50	100		
Hepatomegaly	25	50		
Icterus	24	48		
Cough	15	30		
Pallor	12	24		
Loose stools	8	16		
Altered sensorium	2	4		
Clinical Manifestations				

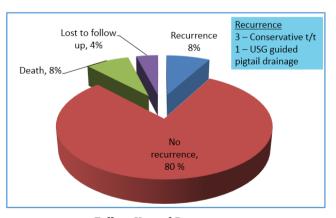
Inv.	Abnormality	N	%		
	Leucocytosis (> 11,000 cells/cumm)	34	68		
Routine	Anaemia (< 10 g/dL)	11	22		
	Hyperglycaemia (> 200 mg/dL)	28	56		
RFT	Raised urea (> 45 mg/dL)	12	24		
Kri	Raised creatinine (> 1.2 mg/dL)	9	18		
	Hyperbilirubinaemia (> 2.4 mg/dL)	29	58		
	Hypoalbuminaemia (< 3.5 mg/dL)	42	84		
	Elevated Sr. ALP (> 150 IU/L)		84		
LFT	Elevated SGOT (> 40 IU/L)	24	48		
	Elevated SGPT (> 40 IU/L)	37	74		
	Elevated prothrombin time (> 14	24	48		
secs)		44	40		
Biochemical Analysis					

Microbiological Analysis


Pus Culture	N	%
Enterococcus spp.	7	18
E. coli	7	18
K. pneumoniae	4	11
S. aureus	3	8
No growth	17	45
Total	38	100

Amoebic Serology (IgG)	N	%
Positive	43	86
Negative	7	14
Total	50	100

Radiological Analysis


Chest X-ray Findings	N	%
Normal	19	38
Abnormal	31	62
 Elevated right dome of diaphragm 	23	46
 Pleural effusion 	12	24
 Right basal pneumonitis 	10	20
Air fluid level	2	4

USG Findings	N	%
Lobe involved Right Left Both	37 6 7	74 12 14
Number of abscesses Solitary Multiple	37 13	74 26
Size of abscesses Small (< 5 cms) Large (> 5 cms)	16 34	32 68

Complications of Liver Abscess

Type of Abscess	Treatment Modality	N	%	
Small (< 5 cms)	Medical (antibiotics)	12	24	
Large (> 5 cms)	USG-guided pigtail drainage + antibiotics	29	58	
Intraabdominal ruptured abscess	Open surgical drainage	9	18	
	Total		100	
Treatment				

Follow-Up and Recurrence

I. Demographic Features

Studies	Male	Female		
Present Study	90%	10%		
Santos Rosa et al ⁽³⁾	70%	30%		
Venu Gopal et al(4)	65.1%	34.9%		
Gender				

					-		C 4				
Studies		Most Common Age				Range of Ages					
		Group A		Affected (yrs.)		(y	rs.)				
Venu (. *			20-50		20-75					
eta	al		`	, 50							
Chaudhar	y et al ⁽⁵⁾		31	L-60		19	-69				
Jha et	al ⁽⁶⁾		21	L-50		2.5	5-70				
Present	Study		31	L-60		15	-69				
Age											
Studies	Lower				-	per ddle	Upper				
Present Study	20 (40%)	18 (369	%)	12 (24%)		-	1				
	Soc	cioecono	om	ic Status							
Risk Facto	r Present	Study	M	athur et a] (7)	Chai	n et al(8)				
Alcoholism	n 849	% 70%		84% 709		84% 70%		70%			-
Diabetes	489	20%		6		- 59.8%					
Mellitus	10	70 - 39			7.070						
	Relevant Risk Factor										

Studies	Acute	Subacute	Chronic	
Present study	30 (60%)	18 (36%)	2 (4%)	
Kapadia et al ⁽⁹⁾		Mostly		
Onset of Disease and Hospital Presentation				

Clinical Features

Symptom	Mangukiya et al ⁽¹⁰⁾	Santos Rosa et al ⁽³⁾	Chaudhary et al ⁽⁵⁾	Present Study			
Pain in abdomen	97%	90%	98%	100%			
Fever	74%	40%	94%	90%			
Cough	14%	-	35%	30%			
Icterus	26.5%	70%	25%	48%			
Loose stools	6.2%	10%	18%	16%			
Altered sensorium	4.5%	0%	0%	4%			
	Symptoms						

Signs	Mangukiya et al ⁽¹¹⁾	Chaudhary et al ⁽⁶⁾	Present Study	
Jaundice	-	24%	24%	
Pallor	-	23%	24%	
Fever (> 38.5°C)	74%	94%	94%	
Abdominal tenderness	95%	100%	100%	
Hepatomegaly	26%	50%	50%	
Respiratory findings	14%	61%	62%	
Shock	4.5%	0%	4%	
Signs				

Investigation	Mangukiya et al ⁽⁹⁾	Jha et al ⁽⁵⁾	Santos Rosa et al ⁽²⁾	Present Study
Leucocytosis (> 11,000/cumm)	78%	75%	89%	68%
Hb (< 11 g/dL)	41.5%	52%	0%	22%
Hyperbilirubinaemi	12.5%	18%	75%	58%

а					
Elevated PT	34.5%	43%	75%	48%	
Hypoalbuminaemia		40%	80%	84%	
Raised ALP	-	63%	100%	84%	
Elevated SGOT	-	48%	88%	48%	
Elevated SGPT - 50% 88% 74%					
Biochemical Analysis					

Organisms	Czerwonko et al ⁽¹¹⁾	Peris et al ⁽¹²⁾	Kong et al ⁽¹³⁾	Present Study
E. coli	26.7%	16.3%	9.7%	18%
Enterococcus	16.9%	5.1%	4.1%	18%
spp.				
S. aureus	12.7%		2.8%	11%
K. pneumoniae	16.2%	11.2%	76%	8%
Microbiological Analysis				

Studies	Specific Amoebic IgG Antibodies		
Present Study	86%		
Jha et al ⁽⁶⁾	Jha et al ⁽⁶⁾ 88%		
Amoebic Serology			

Studies	Anti-HIV Antibodies	HBsAG Antibodies	Anti-HCV Antibodies
Present Study	2%	6%	4%
Park et al ⁽¹⁴⁾ 32%			
Viral Markers			

Radiological Analysis

Studies	Normal	Abnormal	
Present Study	38%	62%	
Jha et al ⁽⁶⁾	50%	50%	
Lyche et al ⁽¹⁵⁾	47%	53%	
Chest X-Ray			

USG Finding	Jha et al ⁽⁶⁾	Mangukiya et al ⁽¹⁰⁾	Czerwonko	Present
	et al(0)	et al(10)	et al ⁽¹¹⁾	Study
Lobe Involved				
Right	80%	83%	63.4%	74%
Left	10%	4.5%	14.8%	12%
Both	10%	12.5%	21.8%	14%
No. of				
abscesses	80%	56%	45.8%	74%
Solitary	•	/ -	7 0	
multiple	20%	44%	54.2%	26%
Size of				
abscesses				
Small	13%	-	42.9%	32%
(< 5 cms)				
Large	87%	-	57.1%	68%
(> 5 cms)				
USG Abdomen				

Studies	Ruptured Liver Abscess	Septicaemia	Pleural Effusion
Present Study	18%	10%	2%
Mangukiya et al ⁽¹⁰⁾	5%	-	-
Chaudhary V et al ⁽⁵⁾	2%	-	-
Peris et al (12)	-	14.3%	14.3%
Complications			

Studies	Medical (Antibiotics)	USG-Guided Pigtail Drainage + Antibiotics	Open Surgical Drainage
Present Study	24%	58%	18%
Peris et al(11)	31.6%	61.2%	7.1%
Treatment			

Studies	Mortality Rate	
Mangukiya et al ⁽¹⁰⁾	1.5%	
Peris et al ⁽¹²⁾	8.2%	
Santos Rosa et al ⁽³⁾	20%	
Present study 8%		
Outcome of Liver Abscess		

Studies	Recurrence	
Present Study	8%	
Chaudhary et al ⁽⁵⁾ 8%		
Follow-Up and Recurrence		

DISCUSSION

- From our study it was concluded that about 3/4th of cases belonged to 4th to 6th decade. Males were more commonly affected than females. Alcoholism was the most consistent risk factor followed by diabetes mellitus. Most common presenting symptom and sign was abdominal pain and abdominal tenderness in right hypochondriac region respectively. Most common aetiology of liver abscess was amoebic followed by mixed amoebic and pyogenic infections. The most common organisms obtained from pus C/S from liver abscess were Enterococcus spp. and Escherichia coli. Abnormal chest x-ray findings were recorded in > 50% of cases. USG showed majority of cases had large, solitary liver abscess in right lobe of liver. Most common complication observed was intraabdominal rupture of liver abscess for which open surgical drainage was performed. By following standard statistical protocols, all data will be collected and analysed to evaluate the clinicopathological aspects and response to standard institutional management strategies.
- Continuous data was summarised as Mean ± SD (standard deviation of the mean), while categorical data was represented in numbers and percentages. Analyses were performed on SPSS software (windows version 17.0).

CONCLUSION

- Males are more commonly affected than females. About 3/4th of cases were found in 4th to 6th decade of life.
- Alcoholism was the most consistent risk factor followed by diabetes mellitus.
- Majority of patients presented within 7 days of onset of illness.
- Most common presenting symptom and sign was abdominal pain and abdominal tenderness in right hypochondriac region respectively.
- Most common aetiology of liver abscess was amoebic followed by mixed amoebic and pyogenic infections.

- The most common organisms obtained from pus C/S from liver abscess were Enterococcus spp. and Escherichia coli.
- Abnormal chest x-ray findings were recorded in > 50% of cases.
- USG showed majority of cases had large, solitary liver abscess in right lobe of liver.
- Most common complication observed was intraabdominal rupture of liver abscess, for which open surgical drainage was performed.
- Recurrence was observed more following conservative management than other modalities.

REFERENCES

- Kapoor OP. Amoebic liver abscess. 1st edn. Bombay: SS Publishers 1999.
- [2] Perez JY Jr. Amoebic liver abscess: revisited. Philip J Gastroenterology 2006;2:11-3.
- [3] Dos Santos-Rosa OM, Lunardelli HS, Ribeiro-Junior MAF, et al. Pyogenic liver abscess: diagnostic and therapeutic management. ABCD: Arquivos Brasileiros de Cirurgia Digestiva (São Paulo) 2016;29(3):194-7.
- [4] Gopal LV, Rao VD, Srinu M, et al. A study on liver abscess in a tertiary hospital. IJGMP: Int J of Gen Med & Phar 2014;3(1):1-4.
- [5] Choudhary V, Chaudhary A. Clinico-pathological profile of liver abscess: a prospective study of 100 cases. International Surgery Journal 2016;3(1):266-70.
- [6] Jha AK, Das A, Chowdhury F, et al. Clinicopathological study and management of liver abscess in a tertiary care center. Journal of Natural Science, Biology and Medicine 2015;6(1):71-5.
- [7] Mathur S, Gehlot RS, Mohta A, et al. Clinical profile of amoebic liver abscess. J Indian Acad Clin Med 2002;3(4):367-73.
- [8] Chan KS, Chen CM, Cheng KC, et al. Pyogenic liver abscess: a retrospective analysis of 107 patients during a 3-year period. Japanese Journal of Infectious Diseases 2005;58(6):366-8.
- [9] Kapadia S, Dattaroy D. Liver abscess. Indian Journal of Surgery 2002;6:511-9.
- [10] Mangukiya DO, Darshan JR, Kanani VK, et al. A prospective series case study of pyogenic liver abscess: recent trands in etiology and management. Indian Journal of Surgery 2012;74(5):385-90.
- [11] Czerwonko ME, Huespe P, Bertone S, et al. Pyogenic liver abscess: current status and predictive factors for recurrence and mortality of first episodes. HPB (Oxford): The Official Journal of the International Hepato Pancreato Biliary Association 2016;18(12):1023-30.
- [12] Peris J, Bellot P, Roig P, et al. Clinical and epidemiological characteristics of pyogenic liver abscess in people 65 years or older versus people under 65: a retrospective study. BMC Geriatrics 2017;17(1):161.
- [13] Kong H, Yu F, Zhang W, et al. Clinical and microbiological characteristics of pyogenic liver abscess in a tertiary hospital in East China. Medicine (Baltimore) 2017;96(37):e8050.

- [14] Park WB, Choe PG, Jo JH, et al. Amebic liver abscess in HIV-infected patients, Republic of Korea. Emerging Infectious Diseases 2007;13(3):516-7.
- [15] Lyche KD, Jensen WA, Kirsch CM, et al. Pleuropulmonary manifestations of hepatic amebiasis. Western Journal of Medicine 1990;153(3):275-8.