EVALUATION OF GINGIVAL CREVICULAR FLUID ALKALINE PHOSPHATASE IN POSTMENOPAUSAL WOMEN TREATED WITH SUBGINGIVAL SIMVASTATIN

Shivali S. Gaekwad1, Gauresh Kumar Patel2, Sheela Kumar Gujjar3, Sowmya S4, Pramod Kumar T. M5

1Junior Resident, Department of Dentistry, Mysore Medical College and Research Institute, Krishna Rajendra Hospital, Mysore, Karnataka, India.
2Assistant Professor, Department of Periodontology, Chitwan Medical College and Teaching Hospital, Bharatpur, Nepal.
3Professor and HOD, Department of Periodontology, JSS Dental College and Hospital, JSSAHER, Mysore, Karnataka, India.
4Senior Lecturer, Department of Prosthodontics, Crown and Bridge, JSS Dental College and Hospital, JSSAHER, Mysore, Karnataka, India.
5Professor and HOD, Department of Pharmaceutics, JSS College of Pharmacy, Mysore, Karnataka, India.

ABSTRACT

BACKGROUND
Women at menopause are found to be at risk for decreased bone density and chronic periodontitis due to oestrogen deficiency and common risk factors. Statins have anti-inflammatory and anti-resorptive properties and are successfully used in postmenopausal osteopenia. Increased alkaline phosphatase activity is observed in periodontitis. Thus, 1.2 mg Simvastatin gel was used subgingivally in this study. The level of alkaline phosphatase was evaluated in the sites treated as a biomarker.

MATERIALS AND METHODS
20 systemically healthy postmenopausal subjects were sampled. Two bilateral pockets (≥ 4 mm) in each subject were randomised. After phase I therapy, the selected sites were randomised as either site A or site B. The sites received either 1.2 mg Simvastatin in-situ gel or a placebo gel. An assessment of the probing depth and clinical attachment level was made on the baseline and at 3 months interval. Gingival crevicular fluid was tested for alkaline phosphatase levels on baseline, 14th day and 90th day post-operatively. Statistical analysis included descriptives, repeated measure ANOVA, Wilks’ Lamdba, paired and independent sample t-test.

RESULTS
The test and control sites demonstrated improvements in clinical parameters, which was statistically significant (p < 0.05). Further, the test sites showed statistically significant improvement over the control sites. A significant decrease in GCF alkaline phosphatase levels was observed in both test and control sites after 14 days. However, the test sites showed significantly higher values than control sites. Although not significant, the alkaline phosphatase levels further decreased in test sites when evaluated after 90 days.

CONCLUSION
The use of simvastatin in-situ gel in periodontal pockets showed satisfactory clinical improvement owing to its prolonged anti-inflammatory property. It can be a promising adjunct to conventional protocols employed in management of periodontal disease in postmenopausal subjects.

KEY WORDS
Alkaline Phosphatase, Chronic Periodontitis, Gingival Crevicular Fluid, Post Menopause, Simvastatin.

BACKGROUND
Periodontal disease is a major public health concern with multicentric prevalence studies having reported a prevalence rate of more than 85% in Indian population.1 Periodontitis is a chronic inflammatory disease, which eventually causes attachment loss and tooth loss. Although, periodontal disease is attributed to microbial infection, the host response and hormonal factors affect its incidence and progression.2

"Financial or Other Competing Interest": Dr. Gaekwad reports grants from JSS University Research Grant, during the conduct of the Study. Submission 01-07-2018, Peer Review 15-09-2018, Acceptance 21-09-2018, Published 01-10-2018.

Corresponding Author:
Dr. Shivali S. Gaekwad,
Junior Resident, Department of Dentistry,
Mysore Medical College and Research Institute,
Krishna Rajendra Hospital, Mysore, Karnataka, India.
E-mail: gaekwadshivali@gmail.com
DOI: 10.14260/jemds/2018/979

Oestrogen deficiency in postmenopausal women is a contributing factor to osteopenia and a potential risk factor for periodontal disease. Dental plaque instigates an excessive response, which is elicited clinically as increased bleeding on probing and bone loss.3 Simvastatin is an inhibitor of hydroxymethyl glutaryl coenzyme A reductase primarily developed for treatment of coronary heart disease by serum cholesterol reduction. Statins have other non-cholesterol pleiotropic effects. Due to their anti-resorptive and bone anabolic effects, they constitute a major breakthrough in osteoporosis treatment along with bisphosphonates and oestrogen.4 Its anti-inflammatory and anti-oxidant properties are found beneficial in periodontal therapy with studies showing 37% reduction in periodontal pockets in patients on systemic statin therapy.5

Alkaline phosphatase is one of the first enzymes isolated from the GCF and recognised as a biomarker for periodontal status. During inflammatory states, it is secreted by the granular leukocytes.6 Increased alkaline phosphatase activity in relation to inflammation is observed in gingivitis and
periodontitis. Postmenopausal women with Chronic
periodontitis were shown to have increased levels of ALP in
GCF and the levels were found to decrease after periodontal
therapy. A significant decrease in probing depth was
documented in chronic periodontitis patients treated with
local delivery of 1.2 mg Simvastatin.

Menopause predisposes women to decreased bone density
and increases their susceptibility to periodontitis. Simvastatin
not only exerts bone anabolic anti-inflammatory effects, but
also prevents progressive bone resorption. This research was
formulated on these lines and it incorporated an assessment of
the local alkaline phosphatase levels as a biomarker.

MATERIALS AND METHODS/ Objective
The evaluation of simvastatin delivered subgingivally as an in
situ gel in postmenopausal subjects with chronic
periodontitis. The site-specific level of alkaline phosphatase
was assessed for its use as a biomarker.

Trial Design
This was a randomised clinical trial. The subjects were
evaluated prospectively for 3 months after intervention on
two contralateral sites.

Sampling and Randomisation
A study examiner enrolled the subjects selectively. This was
done in the Periodontontology Department of JSS Dental College.
The ethical clearance was obtained from the Institutional
Review Board and an informed written consent was taken
from the subjects.

Twelve postmenopausal subjects between 45 and 55 years
of age with no significant medical history, non-smokers and
untreated for periodontitis were selected. In each patient, two
contralateral pockets measuring ≥ 4 mm were selected and
randomised as site A and site B by toss of a coin.

Clinical Examination
Florida probe was used to record the probing depth and
attachment level. This was performed on the baseline and day
90. The gingival crevicular fluid was sampled from the test and
control sites at baseline, 14 days and 90 days. This was done
by the study examiner.

Intervention
The simvastatin gel and a placebo gel were formulated and
sent in matching sealed bottles (A and B) by the
pharmaceutical personnel. The study therapist thoroughly
performed scaling, root planing and subgingivally delivered
the gel A in site A and gel B in site B (Figure 1).

Preparation of 1.2 mg Simvastatin in situ Gel and Delivery
1.2 milligrams of simvastatin powder was dissolved in
methanol solvent, to which 8 mL of distilled water and 2.4
grams of polymer were added to prepare the gel. The selected
pockets were isolated and 0.1 mL of the Simvastatin in situ gel
or the placebo gel was deposited a syringe. The area was
covered by a periodontal dressing. Patients received post-
operative instructions.

Biochemical Analysis
After isolation, 2 microns of GCF was collected using a 5-
micron micropipette from the gingival sulcus (Figure 2) and
transferred to sterile vials having 2 mL Tris carbonate buffer.

The vials were sent for estimation of alkaline phosphatase
level using an autoanalyzer (CHEM-5 PLUS®). The hydrolysis
of p-Nitrophenyl phosphate to yellow coloured p-Nitrophenol
and phosphate is catalysed by alkaline phosphatase enzyme at
a pH of 10.3. The change in absorbance measured by
autoanalyzer at 405 nm wavelength is proportional to ALP
activity in the sample. This is the Wilks’s adaptation of the
Bessey and Lowry method employed in the estimation of the
level of alkaline phosphatase.

Statistical Analysis
The SPSS for Windows version 16.0 was used. The change in
the parameters was assessed with descriptive statistics and
repeated measure ANOVA test. The change, the multivariate
tests, paired “t”, Wilks’ Lambda tests were used for
comparisons over the durations in both the test and the
control. The independent samples “t” test was used to compare
values between the two groups over the durations. The
correlation of alkaline phosphatase levels to probing depth
and clinical attachment levels was done using Pearson’s
correlation test.

RESULTS
Initially, 55 postmenopausal subjects were considered. Only
20 subjects satisfied all the criteria. They underwent the
proposed treatment and evaluation [Figure 3]. No patient
reported with discomfort. The change in GCF Alkaline
Phosphate level from baseline to 3 months was considered
in calculation of the power of the study. The group sample sizes
of 20 achieved 94% power. The mean change in control group
was 8.0 +/- 17.0 and 24.0 +/- 17.0 in test group. Both
the groups demonstrated a statistically significant (P < 0.05)
probing depth decrease and clinical attachment gain from
baseline to 90 days (Table 1). When the test and control groups
were comparatively checked for decreased probing depth and
clinical attachment level gain from baseline to 90 days, the
results were statistically significant in the test (Simvastatin)
group [Table 2]. Both test and control groups showed
significant decrease in GCF alkaline phosphatase levels after
14 days with the control sites showing significantly higher
values than control site. After 90 days, although not significant
the alkaline phosphatase levels further decreased in test sites
and increased in control sites (Table 3 and 4). The correlation
of GCF alkaline phosphatase levels to the clinical parameters
namely probing depth and clinical attachment level was found
to be statistically significant (Table 5).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Time Intervals</th>
<th>Simvastatin Sites</th>
<th>Placebo Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPD</td>
<td>Baseline</td>
<td>6.200 ± 0.52</td>
<td>6.150 ± 0.59</td>
</tr>
<tr>
<td></td>
<td>3 months</td>
<td>4.450 ± 0.72</td>
<td>4.900 ± 0.78</td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>CAL</td>
<td>Baseline</td>
<td>6.250 ± 0.71</td>
<td>6.200 ± 0.76</td>
</tr>
<tr>
<td></td>
<td>3 months</td>
<td>4.400 ± 0.68</td>
<td>4.900 ± 0.78</td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td><0.001</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Table 1. The PD, CAL and GCF ALP within the groups at Different Time Intervals

Statistically significant at P < 0.05. PPD: Probing Pocket Depth, CAL: Clinical Attachment Level.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Simvastatin Sites</th>
<th>Placebo Sites</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>6.200 ± 0.52</td>
<td>6.150 ± 0.59</td>
<td>0.778</td>
</tr>
<tr>
<td>3 months</td>
<td>4.450 ± 0.72</td>
<td>4.900 ± 0.788</td>
<td>0.062</td>
</tr>
<tr>
<td>CAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>6.250 ± 0.71</td>
<td>6.200 ± 0.76</td>
<td>0.933</td>
</tr>
<tr>
<td>3 months</td>
<td>4.400 ± 0.68</td>
<td>4.900 ± 0.78</td>
<td>0.038</td>
</tr>
</tbody>
</table>

Table 2. The PPD and CAL between the groups over Different Time Intervals

Statistically significant at P < 0.05. PPD: Probing Pocket Depth, CAL: Clinical Attachment Level.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Simvastatin Sites</th>
<th>Placebo Sites</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCF ALP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>32.634 ± 12.97</td>
<td>30.992 ± 11.97</td>
<td>0.678</td>
</tr>
<tr>
<td>14 days</td>
<td>10.310 ± 4.33</td>
<td>16.970 ± 8.16</td>
<td>0.003</td>
</tr>
<tr>
<td>3 months</td>
<td>8.597 ± 3.18</td>
<td>22.95 ± 14.96</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Table 3. The GCF ALP between the groups over Different Time Intervals

Statistically significant at P < 0.05. GCF ALP: Gingival Crevicular Fluid Alkaline Phosphatase.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Time Intervals</th>
<th>Simvastatin Sites</th>
<th>Placebo Sites</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCF ALP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td></td>
<td>32.634 ± 12.97</td>
<td>30.992 ± 11.97</td>
<td></td>
</tr>
<tr>
<td>14 days</td>
<td></td>
<td>10.310 ± 4.33</td>
<td>16.970 ± 8.16</td>
<td></td>
</tr>
<tr>
<td>90 days</td>
<td></td>
<td>8.597 ± 3.18</td>
<td>22.95 ± 14.96</td>
<td></td>
</tr>
<tr>
<td>P-value</td>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. The GCF ALP within groups at Different Time Intervals

Statistically significant at P < 0.05. GCF ALP: Gingival Crevicular Fluid Alkaline Phosphatase.

Statistically significant at P < 0.05. PPD: Probing Pocket Depth, CAL: Clinical Attachment Level. GCF ALP: Gingival Crevicular Fluid Alkaline phosphatase.

Figure 1. Subgingival Delivery of In Situ Gels

Figure 2. Collection of GCF from Periodontal Pocket Site for ALP Estimation

Figure 3. Consort Flow Chart for Patient Enrolment, Allocation, Follow-Up and Analysis

CONSORT 2010 Flow Diagram

J. Evolution Med. Dent. Sci./eISSN- 2278-4802, pISSN- 2278-4748/ Vol. 7/ Issue 40/ Oct. 01, 2018

Page 4394
DISCUSSION

The present randomised controlled trial was conducted in a group of postmenopausal women to assess the benefits of simvastatin in situ gel delivered locally into periodontal pockets.

The pathogenesis of periodontitis is explained by the interaction of microbial dental plaque and host defence mechanisms. Other host associated mechanisms and hormonal status can affect the course of periodontal disease by inflammatory response to infection causing bone loss. The variations in secretion of sex hormones during puberty, menstruation, pregnancy and menopause are found to be associated with increased gingival inflammation. Oestrogen deficiency after menopause is found to be a dominant pathologic factor for osteopenia or decreased bone mineral density. This may cause decreased alveolar density and increased susceptibility to bone resorption due to periodontal inflammation. Studies in oestrogen deficient postmenopausal women reported a 3-fold increase in alveolar resorption and systemic oestrogen therapy resulted in decreased gingivitis. Since prevalence of osteopenia and tooth loss increase with advancing age and they share risk factors the postmenopausal period remains vulnerable to periodontal disease progression. Thus, the study was designed to benefit the postmenopausal women.

A split mouth design was employed to randomise the two selected pocket sites in each of the 20 patients. This protocol prevents intra-patient variations, as the sites are treated by random selection in the same session. The goal of periodontal therapy is to eliminate inflammation, arrest worsening of the disease process and create an environment conducive to maintenance of health. Scaling and root planing constitute the corner stone of periodontal therapy, which reduces inflammation pocket depth and increases CAL. Adjunctive use of antibiotics suppress the remaining pathogens. Local drug delivery in the subgingival target area is a reservoir that can provide higher therapeutic doses of the agent with fewer applications over longer periods with better patient acceptance when compared to systemic therapy.

Simvastatin is a synthetic statin widely used for hypercholesterolemia and osteopenia. It is found to inhibit bone resorption and increase osteoblast activity by increasing the expression of bone morphogenetic protein. Simvastatin inhibits isoprene modification of signal transducers of inflammation, thus expressing its anti-inflammatory effect. It decreases production of many inflammatory cytokines and matrix metalloproteinases. Local application of Simvastatin is known to upregulate periodontal regeneration through the osteoblastic differentiation of human periodontal ligament cells. Statin medication in osteopenic patients reported fewer periodontal pockets.

In an attempt to harness the local effects of simvastatin, it was used as a subgingivally delivered in situ gel here. Another research indicated that 1.2 mg% could be optimal through clinical and laboratory assessment. Similarly in this study, the statin sites showed statistically significant improvements when compared to placebo sites.

Simvastatin gel has been used as a local delivery agent in Type II diabetic patients with chronic periodontitis with beneficial results. The local delivery of simvastatin in grade II furcation defects and in periodontal pockets enhances the outcome of mechanical therapy resulting in reduced pocket depths, improved attached gain and bone fill.

Alkaline phosphatase has been measured in GCF to examine the relationship between periodontal conditions and disease activity. Increased alkaline phosphatase activity in relation to inflammation is observed in gingivitis and periodontitis. Since alkaline phosphatase alterations in its GCF levels possibly provides a site specific indication of periodontal disease activity, in this study we have used GCF ALP as a biomarker to assess periodontal condition. The test and control groups showed significant decrease in GCF alkaline phosphatase levels 14 days with the test site showing significantly higher values than control site. After 90 days, although not significant the alkaline phosphatase levels further decreased in test sites and increased in control sites. A previous study on GCF alkaline phosphatase levels in postmenopausal women demonstrated significantly higher GCF alkaline phosphatase levels in periodontitis group. The levels markedly reduced after phase I therapy with a positive correlation between GCF alkaline phosphatase and probing depth.

CONCLUSION

The results prompt that the subgingival delivery of 1.2 mg simvastatin in-situ gel is a promising and cost effective adjunctive to scaling and root planing, as it showed significant improvements in periodontal health. The results also support the assessment of GCF ALP as a diagnostic marker of periodontal disease activity. The study is limited by the relatively small sample size and shorter duration of assessment. This encourages the prospects of a bigger research for more conclusive outcomes.

ACKNOWLEDGEMENTS

The study was supported by the JSS University Research Grant. We would like to thank Dr. Kishore Bhat, Professor, Maratha Mandal Medical College, Belgaum for help in GCF ALP estimation.

Abbreviations

ALP: Alkaline Phosphatase.
CAL: Clinical Attachment Level.
GCF: Gingival Crevicular Fluid.
PD: Probing Depth.

REFERENCES

