THE EFFECTS OF DEXAMETHASONE AND POTASSIUM CHLORIDE AS ADDITIVES TO LOCAL ANAESTHETIC IN SUPRACLAVICULAR BRACHIAL PLEXUS BLOCK: A RANDOMISED CONTROLLED STUDY

Ushakumary Reghunathan1, Bindu Mele Veetil2, Radha Korumbil Raghavan3, Ausaf Ashik Karikannan Thodi4

1Additional Professor, Department of Anaesthesiology, Government Medical College, Kozhikode.
2Associate Professor, Department of Anaesthesiology, Government Medical College, Kozhikode.
3Additional Professor, Department of Anaesthesiology, Government Medical College, Kozhikode.
4Senior Resident, Department of Anaesthesiology, Government Medical College, Kozhikode.

ABSTRACT

BACKGROUND AND AIMS
Supraclavicular brachial plexus block is ideal for upper limb surgical procedures. Dexamethasone and potassium chloride have been used as adjuncts to prolong analgesia. We aimed to compare the effects of addition of dexamethasone or potassium chloride to local anaesthetic solution of bupivacaine and lignocaine on the onset time of sensory and motor blockade and duration of blockade in supraclavicular brachial plexus block in patients undergoing upper extremity surgeries.

MATERIALS AND METHODS
A prospective, randomized, double-blind control study was conducted on 90 healthy patients of ASA grade I/II of age group 20-70 years scheduled for orthopaedic surgery of upper limb under supraclavicular brachial plexus block. Patients were allocated into three groups of 30 each as Group L (Lignocaine+Bupivacaine), LD (Lignocaine+Bupivacaine+Dexamethasone), and LP (Lignocaine+Bupivacaine+Potassium chloride). The parameters observed were time of onset of sensory and motor block, total duration of analgesia, and side effects.

RESULTS
The mean duration of analgesia was longer in group LD (681.0±207.08 minutes) and LP (643.0±167.04 minutes) compared to group L (332.0±40.80 minutes) and was statistically significant (P<0.01) though the difference between group LD and LP was not significant (P=0.85). The mean time for onset of sensory block was 10.50±2.75 minutes in group L, 9.80±2.12 minutes in group LP, and 7.0±1.85 minutes in group LD. The onset of sensory block was earliest in group LD and this was statistically significant when compared to group L (P<0.01) and group LP (P<0.01) while the difference between groups LP and L was not significant (P=0.71). Mean time of onset of motor blockade in group L, group LP, group LD were 12.57±2.95 min, 11.73±2.39 minutes, and 8.63±1.79 minutes respectively. Onset of motor block was earliest in group LD and this was statistically significant when compared to group L (P<0.01) and group LP (P<0.01) while the difference between groups LP and L was not significant (P=0.561).

CONCLUSION
Addition of potassium chloride 0.1 mL or dexamethasone 8 mg to local anaesthetics for supraclavicular block, prolonged duration of analgesia without producing any major side effects. Dexamethasone is a better adjuvant than potassium chloride because it results in more rapid onset and motor blockade.

KEYWORDS
Lignocaine, Bupivacaine, Dexamethasone, Potassium Chloride, Analgesia, Supraclavicular Brachial Plexus Block.

Nowadays, different drugs have been used as adjuvants with local anaesthetics in supraclavicular blocks to prolong intraoperative anaesthesia and postoperative analgesia. The commonly used adjuvants are clonidine, opioids like fentanyl, hydroxypropylcellulose, and butorphanol. In addition, potassium chloride and ketamine have been shown to have minimal side effects. Many studies done previously have proved the advantages of using dexamethasone and potassium chloride as additives to local anaesthetics in supraclavicular block, but no study has been done to compare these two additives. This study was done to compare the effects of these two additives in supraclavicular block.

Movements of ions through the nerve membrane is considered one of the main steps in the process of excitation and propagation of nerve stimuli. A nerve impulse can be effectively blocked by accumulation of potassium ions outside the neuron. Thus, administration of exogenous potassium chloride will reinforce and prolong the blockade produced by bupivacaine. Dexamethasone, a steroid with anti-inflammatory properties, blocks the nociceptive impulse transmission along the unmyelinated C fibres and suppressing ectopic neuronal discharge. It might bring about this effect by altering the function of potassium channels in the excitable cells.

MATERIALS AND METHODS
After approval from the Hospital Ethics Committee, a prospective double-blind randomized controlled study was conducted on 90 patients of ASA grade I/II in the age group of 20-70 years posted for various upper limb surgeries. Patients with allergic reactions to local anaesthetics, peripheral neuropathy, coagulation disorders, local infection at the site of injection, and history of seizures were excluded from the study.

After preoperative evaluation, the patient was briefed about the supraclavicular block to be performed, its advantages over general anaesthesia (GA) and also about the associated complications. Informed consent was obtained from every patient prior to the study and they were familiarized with the use of Visual Analogue Scale (VAS) scoring system.

Patients were randomised into three groups. Randomisation was done by allocating random number generated by the computer to each patient with each group consisting of 30 patients. All groups received a total of 30 ml of the local anaesthetic solution.

Group L (Control group) received 10 ml 1.5% lignocaine with 1:200,000 adrenaline + 18 ml 0.25% bupivacaine + 2 ml sterile water.

Group LD (Dexamethasone group) received 10 ml 1.5% lignocaine with 1:200,000 adrenaline + 18 ml 0.25% bupivacaine + 8 mg dexamethasone.

Group LP (Potassium chloride group) received 10 ml 1.5% lignocaine with 1:200,000 adrenaline + 18 ml 0.25% bupivacaine + 0.2 mmol potassium chloride (0.1 ml) + 1.9 ml sterile water.

The investigator, attending anaesthesiologist, and patients were unaware of the nature of group and drug allocation. Monitors were attached and baseline pulse, blood pressure (BP), respiratory rate, peripheral oxygen saturation (SpO2) were recorded. Patient was positioned in supine and arm to be blocked was adducted and kept by the side. Intravenous access was secured with 18G Teflon cannula and IV Ringer’s Lactate was started. All patients were premedicated with Inj. Midazolam 1mg and ondansetron 4 mg IV. Head was turned to opposite side, shoulder was raised by a roll placed between the scapulae. The supraclavicular area was aseptically prepared and draped.

After a skin wheel with local anaesthetic approximately 1 cm above the mid clavicular point, 22g 5 cm insulated Stimuplex needle was introduced through the skin and directed just above and posterior to the subclavian pulse and advanced slowly in caudal, medial, and posterior direction. The needle was advanced until flexion of fingers were noted. If contraction was still observed when the nerve stimulator voltage decreased to 0.5 mA, the local anaesthetic solution was injected after confirming negative aspiration of blood. Oxygen was administered at a rate of 3-5 L/min with face mask.

Vital parameters (Pulse, respiration, BP) were monitored every two minutes for 30 minutes and then every 10 minutes till the procedure was over and then every 1 hour till patient complained of pain equivalent to VAS score of 4. The time of onset of sensory and motor block and total duration of analgesia were noted.

Time of Onset of Sensory Block
It is the time between the injection and complete abolition of pinprick sensation. Pinprick test was done with sterile 25G needle over the dermatomes C4 to T2 every minute till complete loss of pain sensation.

Time of Onset of Motor Block
It is the time between the injection and complete absence of voluntary movement of the limb.

Duration of Analgesia
Time between onset of analgesia and reappearance of pain or request for pain relief, corresponding to VAS score of 4.

Postoperative analgesia was assessed by visual analogue scale half hourly. Rescue analgesia of Inj. Tramadol 50 mg IM was given as per the requirement. At the end of the study decoding of data was done in all patients belonging to groups L, LD, and LP.

Statistical Analysis
The onset of sensory block, motor block, and duration of analgesia were compared using analysis of variance. Statistical analysis was performed by using ANOVA using the Computer Software Statistical Package for Social Sciences (SPSS). P <0.05 was considered as statistically significant.

RESULTS
All the 3 groups were similar with regards to age and weight (Table 1).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Group L (Mean±SD)</th>
<th>Group LD (Mean±SD)</th>
<th>Group LP (Mean±SD)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>34.20±10.40</td>
<td>35.83±9.24</td>
<td>34.98±8.51</td>
<td>0.798</td>
</tr>
<tr>
<td>Weight (Kg)</td>
<td>51.13±8.25</td>
<td>57.40±5.29</td>
<td>58.63±5.58</td>
<td>0.638</td>
</tr>
</tbody>
</table>

Table 1: Comparison of Demographic Parameters

SD—Standard Deviation
Onset of Sensory Block
The mean time of onset of sensory block was 10.50±2.75 minutes in group L, 9.80±2.12 minutes in group LP, and 7.0±1.85 minutes in group LD (Fig. 1). The onset of sensory block was the earliest in group LD and this was statistically significant when compared to group L (P <0.01) and group LP (P<0.01). Even though there was a difference in the time of onset of sensory block between group Land LP, this difference was found to be statistically insignificant (P=0.71). [Table 2]

Onset of Motor Block
The mean time for onset of motor block in group L, LP, and LD were 12.57±2.95 minutes, 11.73±2.39 minutes and 8.63±1.79 minutes respectively (Fig. 2). The onset of motor block was earliest in group LD and this was statistically significant when compared to group L (P <0.01) and group LP (P=0.01). The difference of onset of motor block was found to be statistically insignificant between group LP and L (P=0.561). [Table 2]

Duration of Analgesia
Duration of analgesia was found to be highest in group LD with mean duration of analgesia (681.0±207.08 minutes) followed by group LP, which was 643.0±167.04 minutes and the least was in group L (332.0±40.80 minutes). [Fig. 3]

The mean duration of analgesia in Group LD and LP were statistically significant when compared to Group L (P<0.01) while the difference between Groups LP and LD was statistically not significant (P=0.850). [Table 2]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group L (Mean±SD)</th>
<th>Group LD (Mean±SD)</th>
<th>Group LP (Mean±SD)</th>
<th>P Value (LD to L)</th>
<th>P Value (LP to LD)</th>
<th>P Value (LD to LP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset of Sensory Block</td>
<td>10.50±2.75</td>
<td>7.0±1.85</td>
<td>9.80±2.12</td>
<td><0.01</td>
<td>0.71</td>
<td><0.01</td>
</tr>
<tr>
<td>Onset of Motor Block</td>
<td>12.57±2.95</td>
<td>8.63±1.79</td>
<td>11.73±2.39</td>
<td><0.01</td>
<td>0.561</td>
<td><0.01</td>
</tr>
<tr>
<td>Duration of Analgesia</td>
<td>332.0±40.80</td>
<td>681.0±207.08</td>
<td>643.0±167.04</td>
<td><0.01</td>
<td><0.01</td>
<td>0.850</td>
</tr>
</tbody>
</table>

Table 2: Comparison of Blockade Characteristics in Group L, LD, and LP

DISCUSSION
Brachial plexus block is widely used in our practice for forearm and hand surgeries. It provides good intraoperative and postoperative analgesia. Our study demonstrated statistically significant faster onset of sensory and motor blockade and longer duration of analgesia in subjects receiving dexamethasone as adjuvant to local anaesthetic solution.12,13 Prolonged analgesia is of utmost importance in orthopaedic surgeries.

Dexamethasone has been studied as one adjuvant to local anaesthetic solution in brachial plexus block. Many studies evaluated effects of dexamethasone when added to local anaesthetic for brachial plexus block and concluded that it prolongs postoperative analgesia.

Steroids have nerve block prolonging effects. They produce analgesia by blocking transmission through nociceptive unmyelinated C-fibres and suppressing ectopic neuronal discharge.14 Dexamethasone-induced prolongation of peripheral nerve blockade is commonly attributed to its anti-inflammatory action. It also improves the quality and duration of analgesia over local anaesthetics alone. This is thought to be mediated by attenuating the release of inflammatory mediators reducing ectopic neuronal discharge and inhibiting potassium channel-mediated discharge of nociceptive C-fibres. Action on glucocorticoid receptor is proposed to alter the functioning of ion channels or produce local acidosis in nerve cell thereby reducing the concentration of local anaesthetic required to produce conduction failure or trapping the highly ionized bupivacaine molecule into the neuronal cell. Both these events would produce an extended...
action of local anaesthetics. The duration of analgesia was
twice with addition of dexamethasone to local anaesthetics.

In our study, it was found that by adding dexamethasone
to the local anaesthetics, the onset of sensory and motor
blockade was significantly shortened compared to adding
potassium chloride. Shrestha BR, Maharajan SK, Tabedar S also
found significant difference in onset of sensory and motor
blockade in local anaesthetics and steroid group.15

By adding potassium chloride, the duration of analgesia
can be significantly increased when compared to local
anaesthetic alone group as addition of potassium ions outside
a nerve cell causes reduction of the resting membrane
potential and causes conduction blockade. Similar results
were observed by Kosha, et al.16 Kircha, et al17 reported that
addition of potassium chloride doubled the duration of
blockade produced by local anaesthetics.

Many studies done previously had proved the advantages
of using dexamethasone or potassium chloride as additives to
local anaesthetics in supraclavicular block. But, no study has
been done to compare these two. In this study, we found that
by adding dexamethasone, the sensory and motor blockade
were more rapid compared to adding potassium chloride to the
local anaesthetics. As far as duration of analgesia was
concerned, both dexamethasone and potassium chloride
increased the duration, but the difference between the two
were not statistically significant.

CONCLUSION
It is concluded from this study that both potassium chloride
and dexamethasone prolong the duration of analgesia when
used with local anaesthetic solution containing lignocaine and
bupivacaine for supraclavicular brachial plexus block without
producing any major side effects. Dexamethasone is a better
adjuvant than potassium chloride because, in addition to
prolonging the duration of analgesia, it also results in more
rapid onset of sensory and motor blockade.

REFERENCES
1. Abram SE. Chronic pain management. In: Barash PG,
 Cullen BF, Stoelting RK. Clinical anaesthesia, 5th ed.
2. Michael FM. Peripheral nerve blockade. In: Barash PG,
 Cullen BF, Stoelting RK. Clinical anaesthesia, 5th ed.
3. Henderson J. Airway management in the adult. Miller’s
 Anaesthesia, 7th ed. Elsevier Churchill Livingstone
 2009:1599-600.
4. Halsted WS. Practical comments on the use and abuse of
cocaine; suggested by its invariably successful
employment in more than a thousand minor surgical
5. Kullenkampff D. Brachial plexus anaesthesia: its
 indications, technique and dangers. Annals of Surgery
1928;87(6):883-91.
7. Winnie AP, Collins VJ. The subclavian perivascular
 technique of brachial plexus anaesthesia. Anaesthesiology
8. Selandor D. Catheter technique in axillary plexus block:
presentation of a new method. Acta Anaesthesiologica
9. Sing S, Agarwal A. A study of the efficacy of clonidine
 added to bupivacaine as compared with bupivacaine
 alone in supraclavicular brachial plexus block for upper
10. Aldrete JA, Barnes DR, Sidon MA, et al. Studies on effects
 of potassium chloride to lidocaine. Anaesthesia and
 Analgesia 1969;48(2):269-76.
 study between tramadol and dexamethasone as an
 admixture to bupivacaine in supraclavicular brachial
12. Urmey W. Upper extremity blocks: regional anaesthesia
 and analgesia. Philadelphia, WB Saunders Company
 1996:254-78.
 added to lidocaine prolongs axillary brachial plexus
 application blocks transmission in normal nociceptive
15. Shrestha BR, Maharajan SK, Tabedar S. Supraclavicular
 brachial plexus block with and without dexamethasone-a
 comparative study. Kathmandu University Medical
 potassium chloride to lignocaine and bupivacaine
 solution of the onset time and duration of brachial plexus
17. Kircha S, Barsa J, Fink BR. Potentiation of nerve block in
 vivo by physiological adjuvants in the solution. British