A STUDY ON GROWTH STATUS OF HIGH SCHOOL CHILDREN IN RURAL SOUTH INDIA

Maheshwaran R¹, Jayashree S Seeri², Narshim Murthy N³

HOW TO CITE THIS ARTICLE:

Maheshwaran R, Jayashree S Seeri, Narshim Murthy N. "A study on growth status of high school children in rural south India". Journal of Evolution of Medical and Dental Sciences 2013; Vol. 2, Issue 45, November 11; Page: 8740-8744.

ABSTRACT: OBJECTIVE: To assess the growth status of High school children in Rural Primary health centre area of South India. **METHODS:** Children from various High schools aged between 13 to 16 years belonging to a PHC area were surveyed in a School Health Program. Height and weight was measured following standard procedures. General nutritional status was assed clinically. SPSS Version 16 was used to analyze the data. **RESULTS:** 630 students were examined. The overall prevalence of stunting was 44.6%. It was significantly higher in boys (47.7) than girls (41.6). Around 71% of the students were underweight, Boys (77.3%) were significantly underweight as compared to girls (64.6). 21% of the children showed signs of malnutrition. **CONCLUSION:** The nutritional status of high school children in Rural Field Practice area is poor compared to many other studies. **KEY WORDS:** High school Children; Underweight; Stunting, Nutrition.

INTRODUCTION: The health and growth of adolescents has attracted global attention in the last two decades¹. This period is known to be a second chance for growth for those children who have experienced a nutritional deficit in their early life^{2, 3}. During this period 35% of adult weight and 11-18% of adult height are acquired.⁴ Short stature in adolescence resulting from chronic under nutrition is associated with reduced lean body mass and deficiency in muscular strength and work capacity⁴.

Anthropometric assessment is a simple tool to study the nutritional status of the community at large. It serves as the most useful screening test especially in developing countries of the world, where malnutrition is widely prevalent and the resources are limited⁵. In India alone there are approximately 60 million children who are underweight⁶ and the prevalence is higher in rural areas compared to urban areas⁷.

The condition of being underweight may have resulted from a) low dietary in-take b) excessive work out c) chronic infections⁸. Thus this study was done in rural area to know the current status of growth and nutrition in high school children.

MATERIAL AND METHODS: The present study was conducted in the Rural Health Block, Kanasawadi Primary health Centre attached to the Department of Community Medicine, SIMS & RC, Bangalore.

A total of four Government and Private high schools were included for the study. School children present on the date of examination were included. The age of the children was determined using school records. Height and weight were measured using standard protocol.

Weight: Measured using a floor type weighing scale with due respect to the standardization of the equipment and procedure. The measurements were taken to the nearest 1 Kg.

Height: was taken using a measuring tape applied to the wall. The measurements were taken with children barefoot with their back of heels, buttocks and head touching the wall. Readings were taken to the nearest 0.5 cm.

The children were asked for any disease symptoms and clinical examination of all the systems was made and diagnosis of nutritional deficiency if any was made based on the findings. The data collected was analyzed using SPSS 16, by Mean SD, and Chi square tests.

RESULTS: A total of 630 children in the age group of 13 to 16, belonging to 4 high Schools were included in the study. 51.1% (322) of them were girls and 48.9% (308) of them were boys.

The overall prevalence of stunting was 44.6%, and it was significantly higher among boys (47.7) as compared to girls(41.6). There was a significant difference in stunting in different ages among girls, highest being in 14 years age which later decreases probably due to onset of puberty. 75% of the boys were stunted in 13 years age group which reduced as age progressed, however again the prevalence of stunting increased in 16 year old boys to 52.8%.

Around 71% of the students were underweight, with BMI <18.5. Boys (77.3%) were significantly underweight as compared to girls (64.6). The prevalence of underweight was highest in 15 yrs of age but there was no significant difference in underweight in different ages.

About 21% of the children showed signs of malnutrition and the proportion was significantly higher in girls as compared to boys. There was progressive improvement in nutritional status as the age increased. There was no significant association between clinical signs of malnutrition and stunting.

DISCUSSION: There is very high prevalence of underweight in the present study (71%). This is very high as compared to some of the studies 14.7% in rural West bengal⁹, 54.79% among adolescent girls in rural Kolar district¹⁰ and similar to study done in rural Tamilnadu 80%,¹¹. Stunting was seen in around 32% of girls in rural Kolar¹⁰ and 37.8% in rural west Bengal⁹ which is similar to our study of 44.6%. More stunting was Noticed among among boys 38.8% as compared to girls 36.9% in a study done on South Indian adolesents¹² which is similar to our study with 47.75 and 46.6% respectively. In India, even after introducing the Mid-Day Meals scheme more than a decade ago, the number of school children who are underweight is still on the rise. Thus, the food given for Mid-Day Meals needs to be checked thoroughly to maintain its nutritional quality. Moreover, Mid-Day Meals alone cannot improve the health of students. It should be associated with Nutrition education to the parents.

CONCLUSION: There is a huge shortfall in growth and development of High school children which will adversely affect the nutritional status of future generations. The poor nutritional status of adolescents, especially girls, has important implications in terms of physical work capacity and adverse reproductive outcomes. School based mid day meal programme and iron supplementation should receive priority in rural areas.

ORIGINAL ARTICLE

	Bo	ys	Girls			
Age in Years	Height in meters					
	mean	SD±	mean	SD		
13	4.74	0.40	4.70	0.35		
14	4.75	0.50	4.72	0.35		
15	4.86	0.49	5.08	0.38		
16	5.00	0.40	4.80	0.39		
Weight in Kg						
13	37.00	12.94	33.81	6.35		
14	36.41	8.90	33.72	6.52		
15	39.10	7.17	38.50	9.69		
16	42.10	7.66	34.92	7.65		

Table 1: Average height and weight of the study population

Age in	Gi	rls	Boys			То	tal	
Years	Normal	Stunting	Total	Normal	Stunting	Total	Normal	Stunting
13	7(53.8)	6(46.2)	13	4(25)	12(75)	16	11	18
14	42(36.8)	72(63.2)	114	49(45.8)	58(54.2)	107	91	130
15	66(64.7)	36(35.3)	102	66(68.8)	30(31.2)	96	132	66
16	73(78.5)	20(21.5)	93	42(47.2)	47(52.8)	89	115	67
Total	188(58.4)	134(41.6)	322	161(52.3)	147(47.7)	308	349(55.4)	281(44.6)
	X ² = 2.38, p>0.05							
	Table II: Distribution of students according to growth in height							

Sex	Under weight	Normal	Over weight	Total	
Girls	208(64.6)	101(31.4)	13(4.0)	322	
Boys	238(77.3)	60(19.5)	10(3.2)	308	
Total	446(70.8)	161(25.6)	23(3.7)	630	
Table III: Distribution of students according to BMI and sex					

X² = 12.54, p<0.05

Age in years	Under weight	Normal	Over weight	Total		
13-14	187(74.8)	55(22.0)	8(3.2)	250		
15	142(77.7)	49(24.7)	7(3.5)	198		
16	117(64.3)	57(31.3)	8(4.4)	182		
Total 446(70.8) 161(25.6) 23(3.7) 630						
Table III: Distribution of students according to BMI and Age						

X² = 5.76, p>0.05

ORIGINAL ARTICLE

Nutritional status	Girls	Boys	Total		
Adequate 238(73.9) 261(84.7) 499(79.2)					
Deficient	84(26.1)	47(15.3)	131(20.8)		
Total 322 308 630					
Table IV: Clinical nutritional status among Boys and Girls					

X² = 11.25, p<0.05

Nutritional status		Total			
	13	14	15	16	Total
Adequate	23(79.3)	162(73.3)	162(81.8)	152(83.5)	499(79.2)
Deficient	6(20.7)	59(26.7)	36(18.2)	30(16.5)	131(20.8)
Total	29	221	198	182	630
Table V: Clinical Nutritional status in various age groups					

X² = 7.55, p=0.056

Nutritional status	Normal	Stunting	Total			
Adequate	272(77.9)	227(80.8)	499			
Deficient	77(22.1)	54(19.2)	131			
Total	349	281	630			
Table VI: Correlation between Clinical nutritional status and growth $X_{2} = 0.76$ n>0.05						

X² = 0.76, p>0.05

REFERENCES:

- 1. PR Deshmukh, SS Gupta, MS Bharambe, A R Dongre, et al. Nutritional status of adolescents in Rural wadhwa IJP, Vol 73-feb 2006.
- 2. Rao S. Nutritional status of Indian population. J Biosci 2001; 26:481-9.
- 3. Helene Delisel, V Chandra Mauli, Bruno De Benoist. Should adolescents be specifically targeted for nutrition in developing countries? To address which problem and how? http://www.who.int/child-adolescent.
- 4. Rao BJN. Nutrient Requirement of Adolescents. Proc. Nutr. Soc. India, 1985, 31:41-62.
- 5. Shrivastav D.K., Thavrani U.P. and Kumar Gupta.V. Health examination of primary school children at Gwalior-part III: Anthropometric assessment. Indian pediatrics 1978; 15, 8, 672.)
- 6. ACC/SCN. (2004) Fifth Report on the World Nutrition Situation: Nutrition for Improved Development Out-comes. United Nations Administrative Committee on Coordination/Standing Committee on Nutrition, Geneva.
- Smith, L.C., Ruel, M.T. and Ndiaye, A. (2006) Why is child malnutrition lower in urban than rural areas? Evi-dence from 36 developing countries. World Development, 33, 1285-1305. doi:10.1016/j. Worlddev.2005.03.002.
- 8. Muhammad, R., Irshad, A. and Salam, K.A. (2008) Body mass status of school children of Dera Ismail Khan, Pakistan. Journal of Ayub Medical College Abbottabad, 20, 119-121.

- Dilip Kumar Das1, Ranadeb Biswas Nutritional Status Of Adolescent Girls In A Rural Area Of North 24 Parganas District, West Bengal. Indian Journal of Public Health Vol.XXXXIX No.1 Jan -Mar, 2005
- 10. H.R. Shivaramakrishnal. A.V. Deepa and M. Sarithareddy. Nutritional Status of Adolescent Girls in Rural Area of Kolar District -A Cross-Sectional Study *,. Al Ame en J Med S c i (2 011) 4 (3) :2 4 3 -2 4 6) I S SN 0 9 7 4 - 1 1 4 3
- 11. Palanisamy Navaneethan1,2, Thiagarajan Kalaivani1, Chandrasekara Rajasekaran1*, Nautiyal Sunil. Nutritional status of children in rural India: a case study from Tamil Nadu, first in the world to initiate the Mid-Day Meal scheme Health.Vol.3, No.10, 647-655 (2011) doi:10.4236/health.2011.310109. http://www.scirp.org/journal/HEALTH/
- 12. Ghalib J Haboubi, Rizwana B Shaikh.A Comparison of the Nutritional status of South India Adolescents from selected Schools of South India and UAE: A Cross-sectional Study. IJCM,/ Vol 34/ Issue 2/April 2009.

AUTHORS:

- 1. Maheshwaran R.
- 2. Jayashree S Seeri
- 3. Narshim Murthy N.

PARTICULARS OF CONTRIBUTORS:

- 1. Professor and Head, Department of Community Medicine, Sapthagiri Institute of Medical Sciences and Research Centre, Bangalore.
- 2. Associate Professor, Department of Community Medicine, Sapthagiri Institute of Medical Sciences and Research Centre, Bangalore.

3. Assistant Professor, Department of Community Medicine, Sapthagiri Institute of Medical Sciences and Research Centre, Bangalore.

NAME ADDRESS EMAIL ID OF THE CORRESPONDING AUTHOR:

Dr. Jayashree S. Seeri, 315/A, II Block, III Stage, Basaveshwaranagar, Bangalore. Email – jseeri@rediffmail.com

> Date of Submission: 26/10/2013. Date of Peer Review: 28/10/2013. Date of Acceptance: 31/10/2013. Date of Publishing: 05/11/2013