AN IN VITRO COMPARATIVE EVALUATION OF ENAMEL MICROHARDNESS IN SOFT DRINKS, CPP-ACP, AMINE FLUORIDE AND SODIUM FLUORIDE WITH FUNCTIONALISED TRICALCIA PHOSPHATE

Dilip Katakam1, Sh. Priyadarshini2, Ramya Raghu3, Ashish Shetty4, Takhellambam Premlatadevi5, Sivaram Cherukuri6

1Practitioner, Sri Sai Dental Hospital, Gudivada, Andhra Pradesh.
2Assistant Professor, Department of Conservative Dentistry and Endodontics, RIMS, Imphal.
3Professor and HOD, Department of Conservative Dentistry and Endodontics, BIDS, Bangalore.
4Associate Professor, Department of Conservative Dentistry and Endodontics, BIDS, Bangalore.
5Assistant Professor, Department of Conservative Dentistry and Endodontics, RIMS, Imphal.
6Practitioner, Sri Sai Dental Hospital, Gudivada, Andhra Pradesh.

ABSTRACT

BACKGROUND
Objectives - Tooth erosion is a common dental problem. It is a localised loss of tooth surface by a chemical process of acidic dissolution of non-bacterial origin. Softening of the enamel surface is an early manifestation of the erosion process. In recent times, the prevalence of dental erosion is steadily increasing. Management of erosion is thus becoming important to the long-term health of the human dentition. In the initial stages, erosion can be reversed by remineralising agents. Several remineralising agents are available in the market. Hence, the aim of the present study was to assess the enamel microhardness of teeth demineralised following exposure to an acidic beverage like carbonated drink - coca cola and evaluating the remineralising potential of recently available remineralising pastes, namely CPP-ACP (GC - Tooth Mousse), Amine fluoride (Amflor) and NaF with functionalised tricalcium phosphate (Clinpro).

MATERIALS AND METHODS
Thirty extracted human maxillary incisors were decoronated and embedded in self-cured acrylic resin. Baseline microhardness of enamel was measured and samples were randomly divided into 3 main groups with each having two subgroups. After demineralisation with carbonated drink (cola), they were tested for microhardness. For Group I - 0.5 mm layer of CPP-ACP was applied on enamel surface for 3 min and samples were stored in artificial saliva (Group IIA) and deionized water (Group IIB). For Group II - 0.5 mm layer of amine fluoride was applied for 3 min and samples were stored in artificial saliva (Group IIA) and deionized water (Group IIB). For Group III - 0.5 mm layer of functionalised Tricalcium Phosphate (Clinpro) was applied for 3 min and samples were stored in artificial saliva (Group IIIA) and deionized water (Group IIIB). All the samples were stored in respective solution for six hours at 37°C. After this microhardness values were evaluated for all the groups and data analysis was done by One-Way ANOVA technique.

RESULTS
Among all the groups,

- Samples stored in artificial saliva showed increased microhardness than the samples in deionized water.
- Statistically significant difference was seen between Group IIA (Amflor in artificial saliva) and Group IIB (Amflor in deionized water).
- Group IIA (Amflor in artificial saliva) demonstrated increased microhardness values after remineralisation.

CONCLUSION
All the three remineralising agents {CPP-ACP (GC-Tooth Mousse), Amine fluoride (Amflor), NaF with fTCP - (Clinpro)} are effective in reversing the effects of tooth erosion. Their remineralising potential is comparable. All these pastes demonstrated superior results in artificial saliva as opposed to deionized water.

KEYWORDS
Artificial Saliva, Amine Fluoride, Carbonated Drink (Cola), Casein Phosphopeptide-Amorphous Calcium Phosphate, Dental Enamel, Sodium Fluoride with Functionalised Tricalcium Phosphate, Tooth Erosion, Vickers Hardness Tests.

BACKGROUND
Dental erosion is a contemporary disease, mostly due to the change in dietary patterns in modern society. It is a “silent” and multifactorial disease, highly influenced by habits and lifestyles. Erosion is a localised loss of tooth surface by a chemical process of acidic dissolution of non-bacterial origin. It is primarily attributed to the ingestion of organic and inorganic acidic substances. Tooth erosion may be extrinsic or intrinsic. Excessive consumption of acidic food and beverages are one of the most common extrinsic factors causing dental erosion.
Intrinsic factors include Gastro-Oesophageal Reflux Disease (GERD), anorexia, bulimia, chronic alcoholism or gastrointestinal disorders. Among various approaches to treat tooth erosion, preventive measure is an important approach which enhances the acid resistance to the tooth structure and promotes the process of remineralisation. Remineralisation can be achieved naturally from the oral environment (Saliva) or artificially through the application of remineralising agents. Saliva provides protective effects by neutralising and clearing the acid and it is also a good source of inorganic ions like calcium and phosphate necessary for the remineralisation process. Studies have reported that enamel softened by acidic beverages were rehardened following exposure to saliva or artificial saliva.

Fluoride present in saliva also plays a significant role in shifting the equilibrium towards remineralisation. It is a well-known fact that fluoride enhances the remineralisation of initial carious lesions and early erosion lesions by absorbing onto the partially dissolved crystal lattice of hydroxyapatite. Fluorides can be introduced into the oral environment via personal (Dentifrices, mouth rinses) or professional applications (Varnishes, foams, gels, etc.). They are available both in inorganic and organic forms. Inorganic forms include sodium fluoride, sodium monofluorophosphate, stannous fluoride and acidulated fluoride gel. Amine fluoride is a type of organic fluoride introduced by Muhleman in 1967 with a high bioavailability of fluoride. Amflor (Group Pharmaceuticals) is a popular brand of organic fluoride toothpaste presently available in the market. Milk and cheese are well known dietary agents for enhancing remineralisation due to their high content of calcium and phosphate. Casein Phosphopeptide Amorphous Calcium Phosphate (CPP-ACP) derived from milk protein has been used as a supplemental source of calcium and phosphate ions in the oral environment. This is commercially available as GC Tooth Mousse (GC Asia Dental), which is a promising agent to promote remineralisation.

Tricalcium phosphate (TCP) is a hybrid material created with a milling technique that fuses β-tricalcium phosphate and sodium lauryl sulphate or fumaric acid. This blending results in a functionalised TCP (FTCP). FTCP controls the delivery of calcium and phosphate ions to the teeth and works synergistically with fluoride to improve its performance. Clinpro (3MESPE) is a recently introduced commercial FTCP paste available in the market.

Softening of the enamel surface is an early manifestation of the erosion process. Here, a scaffold of the hydroxyapatite crystal remains. At this stage agents like calcium, phosphorus and fluorides can bring about the remineralisation process. However, when the surface is completely lost, remineralising agents are not effective. In the initial stages of erosion, there is a reduction in the surface hardness of the enamel. Subsequent to remineralisation procedures, the hardness increases. Assessing surface hardness of enamel is therefore a useful tool to verify the efficacy of various remineralising agents.

Hence, the aim of the present study was to assess the enamel microhardness of teeth demineralised following exposure to an acidic beverages like carbonated drink - coca cola and evaluating the remineralising potential of recently available remineralising pastes, namely CPP-ACP (Tooth Mousse), Amine fluoride (Amflor) and NaF with functionalised tricalcium phosphate (Clinpro).

MATERIALS USED IN THE STUDY

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturer</th>
<th>Composition</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cola Soft Drink</td>
<td>Coca-Cola</td>
<td>Carbonated water, 10 percent sugar, Flavours</td>
<td>2.70</td>
</tr>
<tr>
<td>Artificial Saliva</td>
<td>Cash Pharmacy (Bangalore)</td>
<td>0.65 g/L potassium chloride British Pharmacopoeia (BP), 0.058 g/L magnesium chloride BP, 0.165 g/L calcium chloride BP, 0.804 g/L dipotassium hydrogen phosphate U.S. pharmacopoeia, 0.365 g/L potassium dihydrogen phosphate, 2 g/L sodium benzoate, 7.8 g/L sodium carboxymethyl cellulose BP, deionized water to make 1 L.</td>
<td>6.73</td>
</tr>
<tr>
<td>Casein Phosphopeptide-Amorphous Calcium Phosphate (Tooth Mousse)</td>
<td>GC, Tokyo</td>
<td>Pure water, glycerol, casein phosphopeptide-amorphous calcium phosphate, d-sorbitol, silicon dioxide, sodium carboxymethyl cellulose, propylene glycol, titanium dioxide, xylitol, phosphoric acid, guar gum, zinc oxide, sodium saccharin, ethyl-p-hydroxybenzoate, magnesium oxide, butyl-p-hydroxybenzoate, propyl-p-hydroxybenzoate</td>
<td>6.60</td>
</tr>
<tr>
<td>Amlor</td>
<td>Group Pharmaceuticals, Bangalore</td>
<td>Purified water, sorbitol, propylene glycol, silica, amine fluoride (1000 ppm fluoride), cocamidopropyl betaine, titanium dioxide, peppermint oil, hydroxyethyl cellulose, sodium saccharin.</td>
<td>4.70</td>
</tr>
<tr>
<td>Clinpro</td>
<td>3M ESPE</td>
<td>Water, Sorbitol, Hydrated Silica, Glycerin, Polyethylene-Polypropylene Glycol, Flavour, Sodium Lauryl Sulfate, titanium dioxide, carboxymethyl cellulose, sodium saccharin, sodium fluoride (950 ppm F, 0.21% w/w, 0.12% w/v fluoride ion), tri-calcium phosphate.</td>
<td>6.96</td>
</tr>
</tbody>
</table>

Table 1. Materials Used, its Composition and pH
MATERIALS AND METHODS
Sample Preparation
Thirty intact and noncarious human maxillary central and lateral incisors were collected and disinfected according to Occupational Safety and Health Administration (OSHA) recommendations. The teeth were stored in physiological saline and decoronated at cemento-enamel junction using a high speed diamond disc. Samples were divided into 3 main groups (n = 10 samples) with each group having two subgroups (n = 5 samples). They were mounted in self cure acrylic resin blocks with the labial surface levelled on top and lying flat and parallel to the horizontal plane and polished. A Vickers microhardness indenter (ZWICK/ROELL Indentec, India) was used to evaluate the baseline microhardness under 100 gm load applied for 15 seconds at 5 different points each 120 μm apart on the left-hand side of the middle one-third of the labial surface and the mean was measured. All the samples were stored in physiologic saline.

Erosion Process
The pH of the cola soft drink (Coca-Cola, India) and artificial saliva (Table 1) was measured with a pH meter (ELCO, L1120, Bangalore). Each sample was immersed in 32.5 mL of the cola soft drink for five seconds and then in 32.5 mL of artificial saliva for another five seconds. Ten cycles of the immersion process were conducted at room temperature. This protocol was repeated two times at six-hour intervals. After the demineralisation process was completed, the samples were washed with deionized water and blotted dry. The enamel surface hardness was measured with the Vickers indenter at five different points and the mean was measured.

Remineralisation Process
A 0.5 mm layer of CPP-ACP (GC Tooth Mousse) was applied on the enamel surfaces of the samples in Group I for 3 min and then the samples were stored in artificial saliva (Group IA) and deionized water (Group IB). For Group II, 0.5 mm layer of amine fluoride (Amflor) was applied for 3 min and samples were stored in artificial saliva (Group IIA) and deionized water (Group IIB). For Group III, 0.5 mm layer of functionalised Tricalcium Phosphate (Clinpro) was applied 3 min and samples were stored in artificial saliva (Group IIIA) and deionized water (Group IIIB). All the samples were stored at respective solutions for six hours and at 37°C. After the remineralisation process was completed, the samples were washed with deionized water and blotted dry, followed by measurement of enamel surface hardness using Vickers indenter at five different points and the mean was calculated.

RESULTS
The mean enamel microhardness at baseline after erosion and after remineralisation is shown in Table II and Graph 1. After remineralisation, the mean microhardness increased by 29.03% in Group IA (CPP-ACP in artificial saliva), 23.88% in Group IB (CPP-ACP in deionized water); 30.78% in Group IIA (Amflor in artificial saliva), 19.43% in Group IIB (Amflor in deionized water) and 30.04% in Group IIIA (Clinpro in artificial saliva), 25.98% in Group IIIB (Clinpro in deionized water). There was no statistical significant difference among the groups when the P value is 0.05. Statistical difference was seen among the samples of Group IIA and Group IIB when the P value is 0.043.

<table>
<thead>
<tr>
<th>Enamel Treatment</th>
<th>Group IA</th>
<th>Group IB</th>
<th>Group IIA</th>
<th>Group IIB</th>
<th>Group IIIA</th>
<th>Group IIIB</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>At Baseline</td>
<td>451.20±42.76</td>
<td>434.70±21.94</td>
<td>500.60±39.10</td>
<td>486.20±36.85</td>
<td>423.00±63.55</td>
<td>474.80±42.32</td>
<td>0.057</td>
</tr>
<tr>
<td>After Demineralisation (Erosion)</td>
<td>361.60±25.74</td>
<td>327.40±46.03</td>
<td>376.20±18.13</td>
<td>326.60±59.68</td>
<td>364.80±22.44</td>
<td>341.80±45.07</td>
<td>0.250</td>
</tr>
<tr>
<td>After Remineralisation</td>
<td>466.60±9.03</td>
<td>405.60±47.97</td>
<td>492.00±4.47</td>
<td>389.60±64.06</td>
<td>474.40±48.38</td>
<td>430.60±75.32</td>
<td>0.043</td>
</tr>
</tbody>
</table>

Table 2. Mean Enamel Microhardness Values at Baseline, after Demineralisation and Remineralisation

DISCUSSION
In recent times, the prevalence of dental erosion is steadily increasing.13 Management of erosion is thus becoming important to the long-term health of the human dentition. One of the main causes for enamel demineralisation is the drop in pH below the critical point for hydroxyapatite dissolution. The equilibrium between enamel demineralisation and remineralisation maintains an intact enamel surface.14 Erosion is considered as a mineral loss. Mineral gain or loss in enamel as a result of demineralisation and remineralisation can be measured as a change in hardness.15 Reduced hardness of enamel and loss of mineral can be measured by various methods, which include direct and indirect techniques.
The bound CPP-ACP releases calcium ions, phosphate ions and hydroxide ions to diffuse into enamel subsurface lesions. Supersaturation of these ions within the enamel lesion leads to remineralisation of the enamel.19 Recent studies have indicated that the anti-caricogenic properties of CPP-ACP may also be responsible for prevention of enamel erosion. CPP-ACP is an efficient remineralising agent, as it can consume the acid generated during enamel erosion by generation of increased levels of calcium and phosphate ions including CaHPO\textsubscript{4}, thus maintaining the high concentration gradients into the lesion.20,21 The results of our study concurred with the results of previous studies, which have also reported increased remineralising potential of CPP-ACP on eroded enamel.15,22

Topical fluorides are popular agents for caries prevention and remineralisation of early lesions giving an acid resistant surface to the reformed crystals. Until recently inorganic fluorides like sodium fluoride, stannous fluoride, acidulated phosphate fluoride, etc. have been popular as remineralising agents. Presently, it has been demonstrated that organic fluorides like amine fluoride are superior to inorganic fluorides in this regard. There are not many studies on the effect of amine fluoride on enamel microhardness subsequent to demineralisation. A study by Arnold WH et al demonstrated superiority of amine fluoride (AmF) over sodium fluoride (NaF) due to slow release of fluorine and a more constant saliva fluorine level.14 In our study, Group IIA (AmF in artificial saliva) demonstrated 30.79\% increase in enamel microhardness. This may be because long-chain amines have been reported to potentiate fluoride uptake as well as retard acid dissolution of enamel.

Recently, in order to improve the remineralising efficacy of fluoride containing tooth pastes, attempts have been made to combine fluoride with other remineralising agents. This is because researchers have reported that non-fluoride mineralising agents like calcium and phosphate are capable of working synergistically with fluoride to elevate the efficacy of the combination.12,23

A novel fluoride dentifrice, Clinpro 5000, was introduced by 3M ESPE. This is a 1.1\% NaF containing an innovative functionalised Tricalcium Phosphate (TfTCP) ingredient that has been shown to boost remineralisation performance relative to fluoride only systems.12,24 During the manufacturing process, a protective barrier is created around calcium allowing coexist with fluoride ions. As it comes in contact with saliva brushing, the barrier breaks down and makes the calcium, phosphate and fluoride readily available to the tooth.

A study by Karlinsey concluded that the synergistic combination of fluoride plus TfTCP may provide superior surface and subsurface remineralisation of enamel compared to only fluoride toothpastes.12 This is similar to the findings of our study where Group IIA (Clinpro in artificial saliva) showed 30.78\% and Group IIB (Clinpro in deionised water) showed 25.98\% respectively.

The results indicate that all the three remineralising agents tested are effective in reversing the effects of tooth erosion. Their remineralising potential is comparable. They demonstrated superior results in artificial saliva as compared to deionized water. Our observations should be strengthened with support from additional in vitro studies with larger sample size as well as long-term large scale clinical trials.
CONCLUSION
It can be concluded that microhardness of surface enamel is decreased by coca cola and all the remineralising agents tested demonstrate a significant increase in enamel microhardness almost approaching baseline values. Artificial saliva is a better storage medium for enhancing remineralisation. Amine fluoride demonstrated superior remineralising potential than CPP-ACP and sodium fluoride with fTCP, although this was not statistically significant.

REFERENCES