PREVALENCE AND RISK FACTORS IN PRIMARY OPEN ANGLE GLAUCOMA IN A HOSPITAL-BASED STUDY DONE IN A TERTIARY CARE HOSPITAL

Prashanthkumar Narayan Achar¹, Nameeth D. A. D’Souza²

¹Assistant Professor, Department of Ophthalmology, Srinivas Institute of Medical Sciences and Research Center, Mangalore.
²Assistant Professor, Department of Ophthalmology, K. S. Hegde Medical Academy, Mangalore.

ABSTRACT

BACKGROUND

Glaucoma is a multi-factorial disease and many conditions are considered as risk factors. There is variability in the prevalence rates from one study to the other depending on the population sampled.

The objective of the study was to detect the prevalence of POAG in patients attending the ophthalmic out-patient department who are over 40 years. The proportion of risk factors among patients with primary open angle glaucoma, normal tension glaucoma and ocular hypertension was determined.

MATERIALS AND METHODS

The present study was carried out during the period 2006-2008 at the Yenepoya Medical College, Deralakatte, Mangalore in the Department of Ophthalmology. The study group consisted of 1000 patients aged 40 years and above, belonging to both sexes. They were screened for glaucoma, and in those with established primary open angle glaucoma (POAG), normal tension glaucoma (NTG) and ocular hypertension (OHT), further study was undertaken for the probable risk factors causing them.

RESULTS

Out of 1000 patients screened, glaucoma was noted in 50 cases. This shows the prevalence of glaucoma as 5%. Out of which, 33 were diagnosed to have primary open angle glaucoma, 13 were normal tension glaucoma and 4 had ocular hypertension. There was a steady increase in the number of cases of glaucoma as age advances in those who show an ocular tension of 21 mmHg and above. Average IOP for both sexes in 50 cases of Glaucoma is 23.22 mmHg. Thirty-one patients with POAG and NTG had early field defects. 25 patients showed established field defects and 30 patients showed advanced field defects at least in one eye. Advanced field defects are seen with an increase in CDR of 0.7 and above in 30 patients. A positive family history of glaucoma was elicited in 15 cases of POAG in the first-degree relatives.

CONCLUSION

The prevalence of glaucoma in this hospital-based study was 5%. Age, elevated intra-ocular tension, large cup/disc ratio, asymmetric cupping, myopia, disc haemorrhage, diabetes and positive family history are proven as risk factors in the current study.

KEYWORDS

Primary Open Angle Glaucoma, Risk Factors, Prevalence, Normal Tension Hypertension.

BACKGROUND

Glaucoma is responsible for 14% of all blindness.¹ About 70% of global glaucoma is seen in developing countries including India.² Prevalence of primary open angle glaucoma (POAG) varies greatly between racial and ethnic groups.³ There is variability in the prevalence rates from one study to the other depending on the population sampled, the ages of the individuals studied, the techniques of examinations and the definition of glaucoma [diagnostic criteria] used.³ A higher prevalence rates is seen in earlier studies because glaucoma was diagnosed on the criteria of elevated intra-ocular tension (IOP) or abnormal aqueous humour dynamics instead of visual field loss and optic disc cupping.⁴⁵

There have been five population based studies, three from the state of Tamil Nadu, one from Andhra Pradesh and one from Bengal.⁶-⁹ Similar reports from Karnataka are lacking. To plan the prevention of blindness strategies, it is of paramount significance to have population based prevalence statistics of the causative factors.

Risk refers to the probability of developing POAG in a specified period of time. Assessing risk is different from the ability to separate or distinguish glaucomatous from normal eyes by the relative prevalence of certain parameter. Since glaucoma is a multi-factorial disease, the consideration of a single parameter or a group of parameters taken one at a time, seems an overly simplistic approach. No parameter considered in isolation has proven to be a useful risk factor i.e. a predictor of the development of POAG.¹⁰-¹²

The general risk factors are and age family history, the ocular risk factors are intra-ocular risk factors, and intra-ocular risk factors are intra-ocular pressure, optic nerve head features, including disc haemorrhages and myopia. The systemic risk factors are diabetes mellitus, blood pressure (hypertension), migraine, and thyroid disorders. The presumed risk factors are myopia, disc haemorrhages, large...
cup/disc ratio, asymmetric cupping and diabetes. The potential risk factors are male sex and systemic hypertension.1

The aim of the present study was to detect the prevalence of POAG in patients attending the ophthalmic out-patient department of Yenepoya Medical College, Mangalore, who are over 40 years. The objective of the study was to establish the epidemiology of primary open angle glaucoma. The proportion of risk factors among patients with primary open angle glaucoma, normal tension glaucoma and ocular hypertension was determined.

MATERIALS AND METHODS
The present study was carried out during the period 2006-2008 at the Yenepoya Medical College, Deralakatte, Mangalore in the Department of Ophthalmology. The study was a descriptive observational study. Institutional ethics clearance was obtained before the start of the study. Written informed consent procedure was followed in all patients recruited into the study.

The study group consisted of 1000 patients aged 40 years and above, belonging to both sexes; these patients presented themselves for their geriatric ocular problems like Presbyopia, Refractive errors, Diminution of vision, Diabetes, Hypertension, Migraine, Cardiovascular disorders as referred from the department of Medicine for Ophthalmic evaluation. They were screened for glaucoma, and in those with established primary open angle glaucoma (POAG), normal tension glaucoma (NTG) and ocular hypertension (OHT), further study was undertaken for the probable risk factors causing them.

The “risk factors” studied were categorised as known risk factors like elevated IOP, Age and Family history of glaucoma, and Presumed Risk factors like large cup/disc ratio, asymmetric cupping, vertically oval cup, notching of the cup, irregularities of the neuroretinal rim, pallor, etc. The other non-ocular presumed risk factors studied were Diabetes, Hypertension, and Cardiovascular disorders, migraine, etc. Other early risk factors like nerve damage causing field changes were also noted.

Cases with Primary angle-closure glaucoma and secondary glaucomas were excluded from the study.

In order to ascertain the risk factors for glaucoma, specific examination included family history of glaucoma, age of onset, tonometry, diurnal variations of IOP, ocular fundal examination for optic disc evaluation for enlargement and asymmetry of cupping, vertically oval cup, disc haemorrhages, pallor, polar notchting, nasisation of vessels. Automated perimetric evaluation of the visual fields was undertaken in all relevant cases.

Anterior Segment Evaluation
Anterior chamber depth was estimated by the Van Herick’s method to rule out shallow anterior chamber and scrutinised for evidence of any flair, ectropion uveae, synechiae, etc. to rule out secondary causes of glaucoma.

Gonioscopy
Goldmann 3-mirror contact lens was used for gonioscopy to study the angular width of the angular recess, configuration of the peripheral iris, insertion of the iris root, visibility of angle structures, peripheral anterior synechiae if any, pigmentation, pseudo-exfoliation, etc. Particular attention was paid to search for secondary open-angle glaucoma (pigment dispersion, trauma, etc.)

Visual Acuity and Refraction
Assessment of Central Visual Acuity for both distance and near was done, both un-corrected and best-corrected visual acuity. Every patient diagnosed as glaucomatous was examined in the dark room for clarity of ocular media, and retinoscopy was done using a simple plane mirror with the Priestley-Smith Retinoscopy mirror and/or streak retinoscope to rule out any refractive error. Attention was paid to the association of Myopia or Hypermetropia if any. Correction of refractive error was done for facilitation of accurate perimetry.

Intraocular Pressure
Intra-ocular pressure in all the cases diagnosed as POAG, NTG or OHT was measured with the Goldmann type of applanation tonometer attached to the slit-lamp bio-microscope. Tonometry was done on both eyes before performing gonioscopy or dilatation of the pupil. Time of IOP measurement was also noted.

Optic Disc Evaluation
The disc (ONH) was evaluated by direct, indirect ophthalmoscopy and slit-lamp bio-microscopy. Indirect ophthalmoscopy with +20D condensing lens, and biomicroscopic stereoscopic examination of the posterior pole was done using +78D and +90D condensing lens and with the Goldmann three-mirror contact lens while performing gonioscopy.

Visual field examination and analysis was carried out only on the 50 patients diagnosed as POAG, NTG or OHT.

Operational definitions
IOP ≥21 mmHg is considered as abnormal. Cup/disc ratio of >0.4 was considered as abnormal. Asymmetry of cup/disc was considered if the difference between the eyes was >0.2. A difference of IOP > 5 mmHg in two eyes was considered abnormal.

Evaluation of Glaucomatous Visual Field Defects
Using the automated perimeter (Humphrey Visual Field Analysis), the damage to the optic nerve head and the NFL in glaucoma were assessed in all these 50 cases. Only in those cases (eyes) where the vision was extremely poor (where patient could not fixate) perimetry was abandoned.

Statistics
All continuous variables are expressed as percentages and mean with standard deviation.

RESULTS
Out of 1000 patients screened, glaucoma was noted in 50 cases. This lead to prevalence of glaucoma as 5%. The prevalence of primary open angle glaucoma, normal tension glaucoma and ocular hypertension is given in table 1.
Out of 50 cases (38 males and 12 females) of glaucoma, 13 patients were in the age group of 50 to 59 years. Eleven patients each were noted in age groups 40-49, 60-69 and 70 years and above. The mean age of POAG, NTG and OHT was between 50 to 60 years (54.7).

In the present study, nearly 56% of the eyes had fairly good visual acuity (table 2). 31% of eyes had fairly good vision that would not render them visually handicapped. Another 13% eyes are legally blind as they were in a very advanced state. 71% of the eyes had retained good visual acuity (best corrected vision) of up to 6/18 during this period of study.

IOP as a risk factor in Glaucoma

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Up to 20 mmHg</th>
<th>21 mmHg and above</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>In years</td>
<td>NTG POAG OHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 – 49</td>
<td>5 6 2</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>50 – 59</td>
<td>5 8 1</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>60 – 69</td>
<td>2 9 1</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>70 & above</td>
<td>1 10 -</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>13 33 4</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

The table 2 shows that in the present study, there was a steady increase in the number of cases of glaucoma as age advances in those who show an ocular tension of 21 mmHg and above.

Average IOP for both sexes in 50 cases of Glaucoma is 23.22 (± 0.57) mmHg.

C/D Asymmetry

Out of a total of 46 patients of POAG and NTG, 7 POAG patients of POAG and 2 NTG patients showed no C:D asymmetry. But the remaining patients (37 patients) showed C:D asymmetry, being both significantly high in both POAG with higher IOP compared to NTG patients with normal IOP.

Visual field analysis: Table 3 tabulates the type of field defect observed in patients with POAG and NTG. No statistical significance seen between type of field defect & type of glaucoma.

<table>
<thead>
<tr>
<th>Type of Field Defect</th>
<th>No. of Eyes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>POAG</td>
<td>NTG</td>
</tr>
<tr>
<td>Generalised depression</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Peripheral constriction</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Seidel’s sign</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Arcuate scotoma</td>
<td>16</td>
<td>9</td>
</tr>
</tbody>
</table>

Thirty-one patients with POAG and NTG had early field defects. 25 patients showed established field defects and 30 patients showed advanced field defects at least in one eye.

Correlation of IOP with Visual Field defects: POAG

Early and established field defects are seen in considerable number in the range of 21-30 mmHg, 19 early (14+5) field defects, and 12 established (8+4) field defects (table 4). On the contrary, in the higher pressure range (IOP) viz, 31 mmHg and more, the advanced field defects are seen, viz, 20 eyes out of 26 eyes with advanced VF defects.

This shows that there is a rapid progression of visual field defects from early changes to advanced, as the eyes are subjected to higher pressure range of IOP. Higher the IOP, more advanced is the field defect.

Correlation of CDR with field changes

Early field defects- 13 eyes up to 0.5 CDR. Established Field defects- 6 up to 0.5 CDR and 19 in CDR above this level. Advanced field defects are seen with an increase in CDR of 0.7 and above in 30 patients. Field defects advance rapidly with increase in CDR from 0.5 and above. Till then, up to 0.5 only early field changes like generalised depression and peripheral constriction and nasal steps are seen. Thus, there is a linear relationship between CDR and Field defects.

Family History and Glaucoma

Family History of Glaucoma was elicited in 15 cases of POAG in the first degree relatives.

Glaucoma and other associated Risk factors

Number of diabetes, hypertension and disc haemorrhages and myopia cases seen in the study tabulated in table 5.
DISCUSSION

Several studies in India have put the prevalence rate to vary from 1.3 to 3.9%. In the present study, a total number of 1,000 patients (Hospital based population) over the age of 40 years belonging to both sexes were screened for glaucoma to study the risk factors for glaucoma. The prevalence of Glaucoma in the present study is 5%. Compared to the Population-based studies of the white race, and the Asian studies, the present hospital-based study shows a higher prevalence. This is because the study population consists of patients over 40 years of age (both sexes) who were attending the Department of Ophthalmology for geriatric ocular problems like presbyopia, myopia, macular degeneration, diabetic retinopathy and hypertensive retinopathy. Some of them were referrals from the general practitioners, and a few more were from the Department of Medicine for their ocular examination for diabetes, hypertension and cardiovascular problems. The sample also includes the previously detected glaucoma cases, those who were already on treatment for glaucoma and individuals with a family history of glaucoma.

Identification of risk factors have prognostic or predictive significance for the development of POAG. Risk factors need to be tested in prospective studies to evaluate their sensitivity and specificity.

IOP is best considered both a risk factor and a cause of glaucoma. It is estimated (Melbourne Visual Impairment Project) that for every 1 mmHg the risk of developing glaucoma increased by 10%. Other clinical trials of POAG report that greater pressure lowering results in less progression, thus, establishing IOP as a definite risk factor. In the Baltimore Eye Survey, 10.3% of patients with IOP ≥22 mmHg had glaucoma (and 1.2% patients with less than 22 mmHg IOP). This yields a relative risk of 8.6 for higher IOP levels compared to lower levels of IOP. OHT, also designated glaucoma suspects and early open angle glaucoma without damage have potential consequences of developing POAG. The present study shows a prevalence of 0.4% of OHT compared to 3.3% POAG. NTG is a separate entity which in most ways mimics POAG except the IOP where it is either normal or less than 21 mmHg. In the present study, the prevalence of NTG has been 1.3%. However, these are certain characteristic features that separate NTG from POAG. In NTG – the neural rim is significantly thinner, especially inferiorly and infero-temporally. Cupping in NTG is more broadly sloping, resulting in less disc volume alterations.

In the present study, evaluations were done paying particular attention to cup/disc ratio (C/D). With an increase in the C/D ratio, there is a corresponding increase in the visual field defects. Numerous studies have reported an increased incidence of glaucomatous visual field defects among those with large C/D ratios.

The present study shows that 4 persons with myopia were found to have POAG, and 2 myopes had NTG. These myopes were in the range of -5D to -7D. Numerous case-control studies have recognised an association between myopia, particularly high myopia and POAG. Population based studies also put an increased prevalence of glaucoma by 48%, 60% and 90% when associated with Myopia.

Even though many conditions are ascertained as risk factors; however, these findings require further validation and more extensive studies to consider them as well-established risk factors.

CONCLUSION

The prevalence of glaucoma in this hospital-based study was 5%. Age, elevated intra-ocular tension, large cup/disc ratio, asymmetric cupping, myopia, disc haemorrhage, diabetes and positive family history are proven as risk factors in the current study. Elevated IOP is the most important risk factor for the development of glaucoma.

REFERENCES

