CLINICAL AND MICRO-PATHOLOGICAL STUDY OF FUNGAL INFECTION OF EAR, NOSE AND THROAT IN REWA, MADHYA PRADESH REGION

Yusmeen Siddiqui1, Surendra Singh Moupachi2, Drutpal Singh Baghel3

1Senior Resident, Department of Otorhinolaryngology, Shyam Shah Medical College, Rewa.
2Associate Professor, Department of Otorhinolaryngology, Shyam Shah Medical College, Rewa.
3Associate Professor, Department of Biochemistry, Shyam Shah Medical College, Rewa.

ABSTRACT

BACKGROUND
Human beings are constantly exposed to fungal infection daily. The upper respiratory tract, i.e. ear, nose and throat are constantly exposed to various airborne fungal spores. Surface colonisation has to precede any invasive disease due to this organism. The micro-pathological characteristics of fungal infections in otorhinolaryngology, which are clinical presentation of fungal infection in ear, nose and throat.

MATERIALS AND METHODS
The study was carried out in 68 patients of the Outpatient Department of Otorhinolaryngology, Shyam Shah Medical College, Rewa (M.P.). Aspergillus and Candida species were isolated by using pairs SDA medium and incubating at 37 and 25°C. Colony of Candida species was identified by colony morphology and Gram staining, germ tube and sugar assimilation and fermentation test.

RESULTS
Predisposition factors and organism isolation in ear, nose and throat of patients were showed in their percentage.

CONCLUSION
Aspergillus species were most common isolated organism in ear and nose sinusitis. Candida albicans was common isolated organism in throat.

KEYWORDS
Surface Colonisation, Otomycosis, Topical Steroid, Mycetoma and Cheilitis.

BACKGROUND
Fungi are ubiquitous in the environment. Human beings are constantly exposed to their infection daily. The upper respiratory tract, i.e. ear, nose and throat are constantly exposed to various airborne fungal spores. Over 1,00,000 species of fungi have been described of which only 100 are recognised as pathogenic for human and animals.[1]

Infectious particles in the size range of 10 µm or larger get deposited on nasal or tracheal epithelium and are readily expelled or phagocytised particles in the range of 5 to 10 µm may gain entry to the lower respiratory tract.[2] Candida has an affinity for fibroconnect, thus facilitates attachment to cellular surface.[3,4] It is also seen that candida can gain access to blood stream through intact gastrointestinal mucosa.[5] Aspergillus also has the ability to grow on the skin surface such as in desquamated cells and cerumen found in the ear canal or on mucus membrane of the PNS.[6] Thus, surface colonisation has to precede any invasive disease due to this organism.

Financial or Other, Competing Interest: None.
Corresponding Author:
Dr. Surendra Singh Moupachi,
Associate Professor, Department of Otorhinolaryngology,
Shyam Shah Medical College, Rewa, Madhya Pradesh.
E-mail: drsrmrewa@gmail.com, drbaghel2011@gmail.com
DOI: 10.14260/jemds/2017/912

Fungal Infection of Ear
The external auditory canal has a cartilaginous frame work in its outer third, while its inner two third is bony. Isthmus is the narrowest part of the canal. Medial to the isthmus lies the infection recess, which is important in the pathogenesis of otomycosis.[7] Meyer (1844), first described the fungal infection of external ear. Fungi have been described as the secondary pathogens that affects skin of canal only after it is exposed to bacterial toxin.[8] Recent evidence confirms the notion that fungi can be primary pathogens.[9]

Fungal Infections in Nose and PNS
Numerous environmental and host factors are responsible for the development of fungal sinusitis. Hot and dry climate produces chronic nasal inflammation allowing in growth and tissue damage followed by immunologic reaction of the host to fungal antigens.[10] Allergic mucosal thickening, long-term steroid (local/systemic), chronic bacterial sinusitis and host factor such as diabetes mellitus, carcinoma, blood dyscrasias, immunodeficiency status are predisposing factors for development of Aspergillus and Dematiaceous fungal sinusitis.[11] Anatomical factors in middle meatus may also produces obstruction. The resultant mucosal change, ostial obstruction, decrease ventilation lower the pH and thereby favours the fungal growth.[12]

Fungal Infection of Oral Cavity (Throat)
Most clinicians have seen that Candida albicans is routinely found in the oral cavity of healthy adults. Lichen planus is a
very common to candidiasis. Tobacco consumption was a predisposing cause in each of the 32% patients. Higher prevalence of denture associated erythematous candidiasis was observed in female over 60 years of age. Fungal microbes must adhere to surfaces in order to establish disease and specially Candida albicans adheres to denture materials better and causes the disease. Dorsal surface of tongue, palatal tissues beneath the maxilla are unique growth sites that predispose to the growth of fungal microbes.

MATERIALS AND METHODS

This prospective consecutive study was done in Department of Otorhinolaryngology, Shyam Shah Medical College, Rewa (M.P.). This study was ethically approved by the institutional ethical committee. Written informed consent was taken from every patient before start of study.

The study comprised of 68 patients were selected from the Outpatients Department of Otorhinolaryngology after confirmation of fungal infection. The study was carried out for a period of eight months (from July 2016 to February 2017).

Inclusion Criteria

Once the clinical diagnosis for fungal infection in ENT were made after seeing spores or mycelia mats in the ear canal and mass in the nasal cavity and predisposing factors. All the cases were included for mycological examination.

RESULTS

<table>
<thead>
<tr>
<th>Factors</th>
<th>Ear No. of Patients (23)</th>
<th>%</th>
<th>Factors</th>
<th>Nose No. of Patients (19)</th>
<th>%</th>
<th>Factors</th>
<th>Throat No. of Patients (26)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of unsterile sticks</td>
<td>10</td>
<td>43.47</td>
<td>Prolonged use of topical steroid</td>
<td>5</td>
<td>26.31</td>
<td>Prolonged use of topical steroid</td>
<td>6</td>
<td>23.07</td>
</tr>
<tr>
<td>Use of unsterile oil</td>
<td>5</td>
<td>21.73</td>
<td>Prolonged antibiotic usage</td>
<td>2</td>
<td>10.52</td>
<td>Chronic bacterial infection</td>
<td>2</td>
<td>7.69</td>
</tr>
<tr>
<td>Use of tropical ear drops</td>
<td>3</td>
<td>13.04</td>
<td>Allergy/atopy</td>
<td>1</td>
<td>5.26</td>
<td>Allergy/atopy</td>
<td>13</td>
<td>50.00</td>
</tr>
<tr>
<td>Habited of smoking</td>
<td>3</td>
<td>13.04</td>
<td>Smoking</td>
<td>9</td>
<td>47.36</td>
<td>Smoking</td>
<td>5</td>
<td>19.23</td>
</tr>
<tr>
<td>Use of head cloth</td>
<td>2</td>
<td>8.69</td>
<td>Post-surgery</td>
<td>2</td>
<td>10.52</td>
<td>Post-surgery</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Predisposition Factors for Fungal Infection in Ear, Nose and Throat

Fungal Infection in ENT

<table>
<thead>
<tr>
<th>Isolated Organism</th>
<th>No. of Patients</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>16</td>
<td>69.565217</td>
</tr>
<tr>
<td>Aspergillus flavus</td>
<td>2</td>
<td>8.695622</td>
</tr>
<tr>
<td>Candida albicans</td>
<td>5</td>
<td>21.73913</td>
</tr>
<tr>
<td>Total Number of patients</td>
<td>23</td>
<td>100</td>
</tr>
<tr>
<td>Nose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>8</td>
<td>42.105263</td>
</tr>
<tr>
<td>Aspergillus flavus</td>
<td>7</td>
<td>36.842105</td>
</tr>
<tr>
<td>Aspergillus fumigatus</td>
<td>4</td>
<td>21.052632</td>
</tr>
<tr>
<td>Total No. of patients</td>
<td>19</td>
<td>100</td>
</tr>
<tr>
<td>Throat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candida albicans</td>
<td>26</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2. Organism Isolated in Ear, Nose and Throat

DISCUSSION

All clinical and micro-pathological study of fungal infection of ear, nose and throat revealed that the common predisposing factors were injury to canal wall caused by introducing unsterile sticks and hairpins in 43.47%, topical instillation of unsterile oil in 21.73%, topical instillation of eardrops in 13.04%, followed by swimming in 13.04% and in 8.69%, there was a history of using head cloth.

Most common presentation of predisposing factors in nose were prolonged uses of topical steroids in 26.31%, prolonged antibiotics use in 10.52%, allergy in 5.26%, smoking in 47.36% and post-surgery in 10.52%. Predisposing factors of fungal infection of throat were prolonged uses of topical steroids in 23.07%, chronic bacterial infection in 7.69%, allergy or atopy in 50.00% and smoking in 19.23%.
In ear infection, isolated mycosis were present, Aspergillus niger 69.56%, Aspergillus flavus 8.69% and Candida albicans 21.73%. Isolated mycosis in nose infections were present Aspergillus niger 42.10%, Aspergillus flavus 36.84% and Aspergillus fumigatus 21.05%. 100 percent of all the patients of throat infection patients were affected from Candida albicans.

K O Paulose et al (1989) conducted a prospective study at the Bahrain Military Hospital for a period of one year, after detailed history and examination, a clinical diagnosis of otomycosis was made. A sterile cotton wool application was taken and sent for analysis for bacterial and fungal growth. Results revealed that out of 193 patients, 171 cases produced positive fungal isolates and Aspergillus species (niger and fumigates) have been the most common fungal pathogens. Mohd S Sheikh (1993) conducted a study in 52 patients of otomycosis showed that it is a predominantly unilateral disease, i.e., 80.77 percent had unilateral disease and only 19.25 percent had bilateral infection. Kaur R et al (2000) performed mycological analysis on debris from external ear canal of 95 percent patients who had been clinically diagnosed with otomycosis. 77 samples were positive for fungal growth in which 2 of these samples contains two fungi bringing the total number of isolates to 73. Most common pathogens were Aspergillus fumigatus (41%), Aspergillus niger (36.9%) and Candida albicans 82 percent all of isolated.

Aspergillus fungal sinusitis cases were all subjected to surgical clearance by nasal endoscopes and were put on postoperative topical steroids. Patients diagnosed to have rhinosporidiosis underwent excision with cautery of base and postoperative medication for three months. Fungal infections of the PNS were grouped into four types. The invasive forms are acute sinusitis (fulminant), chronic indolent sinusitis, whereas the noninvasive forms were mucotoma and allergic fungal sinusitis. Pand N K et al (1998) conducted a retrospective analysis of clinical mycological and management aspects on 178 patients with proven disease. On the basis of mycological finding, the patients could be categorised into allergic, noninvasive and invasive forms of disease. Young men were most commonly affected.

Oral cavity, out of 26 oral candidiasis patients who were studied, it was seen that the most common predisposing factor was allergy 13 (50.00%). Few of them had concurrent habit of smoking too, followed by 19.23% of elderly females and asthmatics using inhaled corticosteroids constituting 23.07%. Buhl R (2006) noticed in his study that in addition to systemic side effects of inhaled corticosteroids, local side effects, which included oropharyngeal candidiasis, dysphonia, pharyngitis, cough significantly affects quality of life. David J Zegarelli had suggested that oral candidiasis in elderly females has a gender and age prediction. Segal and associates stated in their study that fungus microbes especially Candida albicans adheres to denture materials better and causes the disease. Shafer W G et al had mentioned in their study that accepted causes of angular cheilitis was loss of vertical dimension of jaw, vitamin deficiencies and candidiasis.

CONCLUSION

It may be concluded that Aspergillus species were most common isolated organism in ear and nose sinusitis. Candida albicans was common isolated organism in throat. Dentures were causative factor in establishing Candida infection. Medical therapy has begun to shift an emphasis from systemic antifungal therapy to various form of topical treatment and immunomodulation.

REFERENCES

