A COMPARISON OF FUNCTIONAL OUTCOME BETWEEN TITANIUM INTERERENCE SCREW AND ON LOOP-ENDOBUTTON FIXATION ON FEMUR IN ARTHROSCOPIC ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION

Md. Qamar Abdul Azeez, 1, Gudla Siva Prasad2

1 Assistant Professor, Department of Orthopaedics, NRIIMS, Visakhapatnam, Andhra Pradesh, India.
2 Associate Professor, Department of Orthopaedics, NRIIMS, Visakhapatnam, Andhra Pradesh, India.

ABSTRACT

BACKGROUND

Arthroscopic Anterior Cruciate Ligament [ACL] reconstruction is very commonly done procedure in recent times.[1] Graft fixation methods vary from aperture fixation [Interference Screws] to suspensory fixation methods [Endobutton]. This is a Prospective non-randomised clinical study of arthroscopic ACL reconstruction comparing the functional results between fixation on femoral side with On Loop Endobutton and Fixation with Titanium Interference screw.

MATERIALS AND METHODS

Two groups of 10 patients who underwent autogenous hamstring ACL reconstruction with a minimum of 1 year follow up evaluation were included in the study. The aperture fixation group underwent Titanium interference screw fixation at both femoral and tibial tunnels. The suspensory fixation group underwent On Loop Endobutton fixation on the femoral side and Titanium interference screw on tibial side. Both group patients were examined prior to surgery and at 3 months, 6 months and 1 year. They were compared for functional outcome with Tegner Lysholm knee score.

RESULTS

There was significant improvement in functional outcome in both the groups between 0 and at 3 months, 3 months and 6 months, but from 6 months to 1 year. Group 2 has better statistically significant functional outcome.

CONCLUSION

In our prospective study of comparison of functional outcomes between aperture fixation and suspensory fixation on femur in arthroscopic ACL reconstruction which were evaluated by using Tegner Lysholm knee score over a period of 1 year, suspensory fixation was found to be better. However, further long-term studies involving large series of cases would throw more light on this information.

KEY WORDS

Titanium Interference Screw, Endobutton Fixation, Comparison, Arthroscopic Anterior Cruciate Ligament


BACKGROUND

Arthroscopic Anterior Cruciate Ligament [ACL] reconstruction is a very commonly done procedure in recent times.[1] The graft fixation methods vary from aperture fixation [Interference screws] to suspensory fixation methods [Endobutton] and trans condylar fixation [Rigid fix].[2] ACL graft fixation has been proposed to exert an essential influence on mechanical behaviour of the graft, though the biomechanics of the final construct will be determined by multiple factors.[2] Femoral fixation of the quadrupled hamstring graft is the key element to a durable ACL reconstruction.[2] There are many options available to achieve it.[2]

Financial or Other Competing Interest: None.
Submission 07-06-2018, Peer Review 02-10-2018,
Acceptance 09-10-2018, Published 17-12-2018.
Corresponding Author:
Gudla Siva Prasad,
#208, Department of Orthopaedics,
NRI Institute of Medical Sciences,
Besides ANITS Engineering College,
Sangivalasa, Visakhapatnam-530116,
Andhra Pradesh, India.
E-mail: dr_sivaji@yahoo.co.in
DOI: 10.14260/jemds/2018/1211

The objective of this study was to compare the functional results between fixation on femoral side with On Loop Endobutton and Fixation with Titanium Interference screw in ACL reconstructions done by using hamstring auto graft.

Aim of the Study

Functional assessment of ACL reconstruction in two different femoral fixation methods by using interference screw and Endobutton.

MATERIALS AND METHODS

This was a prospective nonrandomised study on a series of 20 patients operated on for a Full thickness ACL tear, using hamstring tendon auto graft by two different technique of femoral fixation methods i.e. Titanium interference screw and On-Loop Endobutton by the same surgical team, from January -1- 2017 to January-1-2018 at NRI Medical College and hospital, Sangivalasa, Visakhapatnam.

Inclusion Criteria

1. Diagnosed to have complete ACL tear clinically and radiologically.
2. Age group 15 to 55 years.
3. Examined by single surgeon.
4. Radiological ACL deficient knee confirmed by MRI.
5. Associated Menisci injuries.

Exclusion Criteria
1. Observed chondral lesions that could modify the post op rehabilitation protocol.
2. Collaterals and/or PCL injuries.
3. Chronic ACL insufficiency with osteoarthritis.
4. Infection
5. Bilateral knee injuries.
6. Associated tibial plateau fractures.
7. Age above 55 yrs.
8. Previously operated knee.

All the patients were assessed clinically and confirmed on MRI. History of instability in the forms of sense of knee giving away, positive Lachmann’s test and anterior drawer test were criteria based on which the patients were considered for surgery. All the patients were examined under anaesthesia. A positive Lachmann with soft end point and pivot shift test with glide or clunk were present in all patients. A data sheet containing mechanism of injuries, clinical and radiological examination findings with Tegner Lysholm score was completed. Initially all the cases underwent diagnostic arthroscopy through standard anterolateral portal and ACL tear was confirmed.

Patients in Group 1
First ten patients received Titanium interference screws both proximally and distally.

Patients in Group 2
Second ten received suspensory fixation [On-Loop Endobutton] proximally and Titanium interference screw distally. After getting informed consent from the patients, arthroscopic ACL reconstruction with hamstring tendon grafts which were fixed proximally by Titanium interference screw or Endobutton and distally by interference screws were undertaken.

Surgical Technique
The hamstring tendon was harvested through a 4 cm long incision 3 cm distal to joint line and 2 cm medial to tibial tuberosity. Both the semitendinosus and graciliis were harvested and prepared on the graft board with whip stitch by no 2 Ethibond and quadrupled. All were two portal technique single bundle ACL reconstruction with quadruple hamstring graft harvested from same side. In first ten patients fixation was achieved by both proximally and distally by Titanium interference screws. In second group of ten patients, fixation proximally by On-Loop Endobutton and distally by Titanium Interference screws. The femoral tunnel was made through trans portal. The tibial tunnel was done by an elbow aimer.

Post operatively knee immobilized in full extension with long knee brace, quadricsps, foot and knee exercise started on the second day, all patients underwent standardized rehabilitation protocol. Partial weight bearing was allowed for 10 to 14 days and full weight bearing by 2 to 3 weeks with range of motion, half squat. Stair climbing, cycling and jogging were allowed progressively and they were regularly followed up at 3, 6 and at 12th month. In addition to clinical, anterior drawer test and Lachman, radiological evaluations and functional outcomes were assessed by Tegner Lysholm score at 3 months, 6 months and 1 year follow up. The Tegner Lysholm knee score calculated for 1 limp, 2 support, 3 pain, 4 instability, 5 locking, 6 swelling, 7 stair climbing and 8 squatting. Each of these sections are further divided based on question arises and given score [e.g. 1 Pain a) none b) slight or periodical 3 c) severe and constant 0].

RESULTS
Of the 20 patients, all were men [95%] except one female [5%] in the age group of 16 to 53. Mean age in group 1 was 31.7 and in 2nd group was 33. Right and left knee were involved equally in group 1. In group 2, 70% were right knee only[3] 30% were left knee. The mode of injury in majority was twisting injury during activities 10 [50%] and RTA 8 [40%]. Additional injuries in group -1 two had medial meniscus tear and two had lateral meniscus. In group 2 two had meniscus tear. At follow up Group 1 mean Tegner lysholm knee scores at preop, 3, 6 and 12 month follow up were 74.2, 73.7, 93.5 and 92.5 respectively. Group 2 the mean Tegner lysholm knee score were 74, 74, 94 and 98 respectively. Both the groups were comparable with respect to pre-operative variables. In each group, there was significant improvements in functional outcomes over successive follow-ups. The comparison of functional outcomes between two groups revealed that there was significant improvement in functional outcome in both the groups between 0 and 3 months, 3 months and 6 months, but from 6 months to 1 year Group 2 has better statistically significant functional outcome.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Group 1 - Interference Screw</th>
<th>Group 2 - On-Loop Endobutton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients (%)</td>
<td>10[50%]</td>
<td>10[50%]</td>
</tr>
<tr>
<td>Mean age of patients</td>
<td>31.7</td>
<td>33</td>
</tr>
<tr>
<td>Time from injury to surgery</td>
<td>1month - 3 years</td>
<td>1month - 4 years</td>
</tr>
</tbody>
</table>

Table 1. Basic Data of Study Patients

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Mean</th>
<th>Std. deviation</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLSCORE_PRE OP</td>
<td>10</td>
<td>74.20</td>
<td>2.936</td>
<td>69</td>
<td>77</td>
</tr>
<tr>
<td>TLSCORE_3M</td>
<td>10</td>
<td>73.70</td>
<td>2.406</td>
<td>68</td>
<td>76</td>
</tr>
<tr>
<td>TLSCORE_6M</td>
<td>10</td>
<td>93.50</td>
<td>3.028</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>TLSCORE_1Yr</td>
<td>10</td>
<td>92.50</td>
<td>2.635</td>
<td>90</td>
<td>95</td>
</tr>
</tbody>
</table>

Table 2. Group = 1 Descriptive Statistics*

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLSCORE_PRE OP</td>
<td>10</td>
<td>1.65</td>
</tr>
<tr>
<td>TLSCORE_3M</td>
<td>10</td>
<td>1.35</td>
</tr>
<tr>
<td>TLSCORE_6M</td>
<td>10</td>
<td>3.50</td>
</tr>
<tr>
<td>TLSCORE_1Yr</td>
<td>10</td>
<td>3.50</td>
</tr>
</tbody>
</table>

Table 3. Friedman Test Ranks*

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLSCORE_PRE OP</td>
<td>10</td>
<td>Chi square 25.021</td>
</tr>
<tr>
<td>TLSCORE_3M</td>
<td>10</td>
<td>DF 3</td>
</tr>
<tr>
<td>TLSCORE_6M</td>
<td>10</td>
<td>Asymp sig .000</td>
</tr>
<tr>
<td>TLSCORE_1Yr</td>
<td>10</td>
<td>a. Group=1</td>
</tr>
<tr>
<td>Friedman test</td>
<td>10</td>
<td>b. Freidman test</td>
</tr>
</tbody>
</table>

Table 4. Test Statistics*
Note: p-value=.000 hence there is a statistical difference between the scores of three readings.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLSCORE_PRE OP</td>
<td>10</td>
<td>74.20</td>
<td>2.974</td>
<td>69</td>
<td>77</td>
</tr>
<tr>
<td>TLSCORE_3M</td>
<td>10</td>
<td>74.40</td>
<td>1.174</td>
<td>73</td>
<td>76</td>
</tr>
<tr>
<td>TLSCORE_6M</td>
<td>10</td>
<td>94.00</td>
<td>2.789</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>TLSCORE_1Yr</td>
<td>10</td>
<td>98.00</td>
<td>2.582</td>
<td>95</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 5. Group = 2 Descriptive Statistics

<table>
<thead>
<tr>
<th>Mean Rank</th>
<th>TLSCORE_PRE OP</th>
<th>1.60</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TLSCORE_3M</td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td>TLSCORE_6M</td>
<td>3.10</td>
</tr>
<tr>
<td></td>
<td>TLSCORE_1Yr</td>
<td>3.90</td>
</tr>
</tbody>
</table>

Table 6. Friedman Test Ranks

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi. square</td>
<td>26.040</td>
<td></td>
</tr>
<tr>
<td>Df</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Asymp. sig</td>
<td>.000</td>
<td></td>
</tr>
</tbody>
</table>

Table 7. Test Statistics

Note: p-value=.000 hence there is a statistical difference between the scores of three readings for group 2 also.

Figure 1. 1 Yr. Followup Fixation with Interference Screw Showing Good ROM

Figure 2. 1 Yr. Followup Case of on Loop Endobutton Fixation

Figure 3

Figure 4

Figure 5

Figure 6. X Ray Showing Graft Fixation with Interference Screws
The choice of fixation devices for ACLR is mostly surgeon dependent. Both modes of fixation of ACL reconstruction are associated with improved function and satisfaction of patients as indicated by Lysholm score and anterior drawer test after surgery. However by considering the Tegner Lysholm score magnitudes of both the groups we feel the group 2 Endobutton fixation is better clinically as compared group 1 because the score is statistically same for pre-op and at 3 months and for 3 months and 6 months between the groups but for group 2 it is almost significant for 6 months to 1 year where as it is not for group 1 interference screw fixation.

The Limitations of the study are small number of patients (20) and short duration of one year. Besides we have applied the Tegner Lysholm scores for evaluation of the patient’s outcome and did not use other methods of scoring systems.

CONCLUSION

In our study, we prospectively compared the functional outcomes after doing ACL reconstruction by hamstring graft which were fixed by using Titanium Interference Screws and suspensory fixation with On-Loop Endobutton at femur and Interference Screw at tibia. Functional assessment was done on basis of Tegner Lysholm score. The Endobutton fixation yielded better outcome in terms of instant stability of the graft and functional outcome at the end of one year.

Abbreviations

ACLR- Anterior Cruciate Ligament
BPTB- Bone Patellar Tendon Bone
ACLR- Anterior Cruciate Ligament Reconstruction

REFERENCES


