A COMPARATIVE STUDY OF PARTIAL INFERIOR TURBINECTOMY, SUBMUCOSAL DIATHERMY AND INFERIOR TURBINATE BONE RESECTION FOR INFERIOR TURBINE HYPERTROPHY

N. Gopinathan Pillai1, Binu Babu2, Anjana Mary Reynolds3, Subadhra S4

1Associate Professor, Department of ENT, Pushpagiri Institute of Medical Sciences and Research Centre, Thrivalla.
2Assistant Professor, Department of ENT, Pushpagiri Institute of Medical Sciences and Research Centre, Thrivalla.
3Assistant Professor, Department of ENT, Pushpagiri Institute of Medical Sciences and Research Centre, Thrivalla.
4Junior Resident, Department of ENT, Pushpagiri Institute of Medical Sciences and Research Centre, Thrivalla.

ABSTRACT

BACKGROUND
Nasal obstruction is the common symptom encountered by the Otorhinolaryngologist, which disturbs the quality of life of the patient. The anterior end of the inferior turbinate is the narrowest part of the nasal cavity. Hypertrophy of the inferior turbinate cause significant nasal obstruction. Surgery is the treatment of choice in hypertrophic inferior turbinate refractory to medical treatment. There are a variety of surgical procedures for reduction of inferior turbinate hypertrophy, some of these are done targeting soft tissues of the turbinate, whereas others resect bony concha. In this prospective study, a comparison was made among the results of Partial Inferior Turbinectomy (PIT), Submucosal Diathermy (SMD) and Inferior Turbine Bone Resection (ITBR) in patients with chronic nasal obstruction due to inferior turbinate hypertrophy, not responding to medical treatments. The cases were randomly divided into partial inferior turbinectomy group, submucosal diathermy group and inferior turbinate bone resection group. The study comprised of 114 patients divided into three groups, each of 38 patients. Patients were evaluated post-operatively at 1st week, 1, 3 and 6 months and compared. Nasal obstruction, post-operative pain, intra-operative bleeding and crusting were the parameters recorded. The standard 4-point scale was used for bleeding and crusting. Rest of symptoms were assessed subjectively on visual analogue scale (0 - 10); statistical analysis was done by student’s ‘t’ test.

MATERIALS AND METHODS
The present prospective, randomised study was carried out at Pushpagiri Institute of Medical Sciences and Research Centre, Thrivalla. The study comprised of 114 patients and they were randomly divided into 3 groups, viz. Partial Inferior Turbinectomy group (PIT), Submucosal Diathermy group (SMD) and Inferior Turbine Bone Resection group (ITBR). There were 50 females and 64 males. Their age ranges from 18 to 50 years, and those associated with septal deviation and polyps were excluded from this study. All of them were subjected to surgery under general anaesthesia. Patients were evaluated post-operatively at first week, 1, 3 and 6 months and compared for nasal obstruction, post-operative pain, intra-operative bleeding and crusting. Rest of the symptoms were assessed subjectively on visual analogue scale (0 - 10). Statistical analysis was done by student’s ‘t’ test.

RESULTS
100% improvement of nasal obstruction was recorded in inferior turbinate bone resection group, 92.11% in partial inferior turbinectomy group and 86.85% in submucosal diathermy group in our study.

CONCLUSION
Inferior turbinate bone resection is superior among the three mentioned groups in relieving nasal obstruction and in improvement of quality of life in the present study.

KEYWORDS
Nasal Obstruction Hypertrophied Turbinate, Partial Inferior Turbinectomy, Submucosal Diathermy, Inferior Turbine Bone Resection.

BACKGROUND
Nasal obstruction is the most common complaint presenting to the otorhinolaryngologist. It disturbs the quality of life and results in large economic burdens.

Financial or Other, Competing Interest: None.
Corresponding Author:
Dr. N. Gopinathan Pillai, Associate Professor, Department of Otorhinolaryngology, Pushpagiri Institute of Medical Sciences and Research Centre, Thrivalla.
E-mail: gopidrent@gmail.com
DOI: 10.14260/Jemds/2017/414
vasoconstrictors, imbalanced diet, vitamin deficiency, thyroid hormone disorders, etc.

Pathology
External nose is a projecting triangular structure directed downwards and it is divided into two nostrils by a median septum. Each nostril has roof, floor, medial wall and a lateral wall. The bony lateral wall is convoluted by three turbinates. Each turbinate overlies a meatus. The superior turbinate occupies the posterior third of the lateral wall; the middle turbinate occupies posterior two-thirds and inferior turbinate runs the whole length of the lateral wall. The blood supply of the lateral wall is from Sphenopalatine artery, which is divided into three branches namely inferior turbinate artery, middle turbinate artery and nasopalatine artery.

Nerve Supply
The main sensory nerve supply comes from maxillary nerve, anterior ethmoidal nerve and infraorbital nerve. Parasympathetic nerve supply from superior salivatory nucleus via vidian nerve and sympathetic nerve supply from superior cervical chain.

Physiology of Nose
It provides airway for respiration, air conditioning of the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the pathogens, filters the suspended particles in the inspired air, gives voice resonance, kills the patients refractory to medical treatment with antihistamines, local nasal decongestants, topical steroids were included in the study. All cases were examined thoroughly. The findings were recorded regarding to symptoms on Visual Analogue Scale (VAS) ranging from 0 – 10; 0- no symptoms, 10- most severe symptoms. Diagnostic nasal endoscopy was done with 0° rigid endoscope. Computerised tomography of nose and paranasal sinuses was done to exclude other causes of obstruction like deviated nasal septum, nasal polyps, etc.

Partial Inferior Turbinectomy
After visual inspection, the nose is packed with cottonoids dipped in 4% xylocaine with adrenaline for five minutes. Then it is removed and the turbinates are injected with 1% xylocaine with 1:200000 adrenaline. The turbinate is infractured medially with an elevator. With the help of turbineotomy scissors, lower half of the inferior turbinate is resected and nose is packed with antibiotic impregnated gel form and kept for 24 - 28 hours. The patients were put on antibiotics, analgesics, local decongestants for one week post-operatively.

Advantage
Addressing both soft tissue and mucosa.

Disadvantage
Bleeding, crusting, rhinitis sicca and atrophic rhinitis, synechiae and recurrence.

Submucous Diathermy
Popularised by Simpson and Groves (1958).

Unipolar submucosal diathermy needle electrode is carefully inserted into the medial aspect of inferior turbinate staying parallel to bone, to electrocoagulate the tissue. The electrode is slowly withdrawn over a 20-second period to produce linear submucosal coagulation; this electrode only coagulates the tip.

Advantage
Low risk of bleeding.

Disadvantage
Crusting and oedema of turbinate, bone death and sequestrum formation and recurrence.

Submucous Resection: Endoscopic Guided
Incision is made along the inferior surface of the turbinate, mucoperiosteal flap is elevated. Bony concha is resected and the mucoperiosteal flap is repositioned. Removal of the bone and post-operative scarring results in shrinkage and lateralisation of turbinate, thereby reducing the obstruction.

Advantage
Less bleeding and no recurrence in the present study. Sparing of turbinate mucosa prevents crusting. No atrophic rhinitis, or Rhinitis synechiae.10,11,13,14
Followup
All cases were evaluated post-operatively after 1st week, 2nd week, one, three and six months. A standard visual analogue scale ranging from 0 - 10 was used to assess subjectively to nasal obstruction, rhinorrhoea and post-operative pain; 0- (no symptoms) and 10- (most severe symptoms).

For bleeding and crusting a standard 4-point scale was used.
0- Absent, 1- Mild, 2- Moderate, 3- Severe

Statistical Analysis
Pre-operative and post-operative data were collected, tabulated. Statistical analysis was done by student’s ‘t’ test. A p value of < 0.05 was considered statistically significant.

RESULTS
Turbinate reduction were done in 114 patients, age ranges from 18 to 50 years. The maximum incidence was seen in the age group of 29 - 38 years (45% - 41%).

<table>
<thead>
<tr>
<th>Signs and Symptoms</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasal obstruction</td>
<td>114</td>
<td>100</td>
</tr>
<tr>
<td>Nasal discharge</td>
<td>40</td>
<td>35.08</td>
</tr>
<tr>
<td>Post nasal drip</td>
<td>25</td>
<td>21.92</td>
</tr>
<tr>
<td>Headache</td>
<td>30</td>
<td>26.3</td>
</tr>
<tr>
<td>Obesity</td>
<td>40</td>
<td>35.08</td>
</tr>
<tr>
<td>Snoring</td>
<td>5</td>
<td>4.38</td>
</tr>
<tr>
<td>Hypertension</td>
<td>17</td>
<td>14.91</td>
</tr>
<tr>
<td>Diabetes</td>
<td>5</td>
<td>4.38</td>
</tr>
</tbody>
</table>

Table 1. Signs and Symptoms Pre-operatively

<table>
<thead>
<tr>
<th>Age</th>
<th>PIT</th>
<th>SMD</th>
<th>ITBR</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>F</td>
<td>M</td>
<td>F</td>
<td>M</td>
</tr>
<tr>
<td>18 - 28 yrs.</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>29 - 38 yrs.</td>
<td>11</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>39 - 50 yrs.</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>17</td>
<td>20</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 2. Age and Sex Distribution

<table>
<thead>
<tr>
<th>Signs and Symptoms</th>
<th>PIT</th>
<th>SMD</th>
<th>ITBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasal obstruction</td>
<td>3</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Nasal discharge</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Headache</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Snoring</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Synchiae</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3. Signs and Symptoms Post-operatively in Various Surgeries

DISCUSSION
Inferior turbinate hypertrophy is the commonest cause of nasal obstruction in children and adults. Hypertrophy of the inferior turbinate is secondary to mucosal or submucosal bony hypertrophy. Surgery is the treatment of choice in chronic hypertrophic inferior turbinate refractory to medical treatment. There are variety of surgical procedures for hypertrophied inferior turbinate reduction. Some to these are targeting the soft tissues, others on the turbinated bone. There is no gold standard method established so far. An understanding of which part contributes to turbinate enlargement would help the surgeon in deciding which surgical technique to be used.

Submucosal diathermy prevents mucosal damage, surgical trauma. Post-operative pain is much less and theoretically nasal packing is not required. The fibrotic contracture of submucosal tissue of inferior turbinate results in relieving nasal obstruction, nasal discharge and other signs and symptoms.

In submucosal diathermy technique, preservation of the inferior turbinate will allow more physiologic airflow distribution within the nasal passages. The main disadvantages are bleeding and synechial formation.

Nasal obstruction, rhinorrhoea and itching were significantly improved during followup period (6 months) post-operatively.

In ITBR, the mucosal and submucosal tissue are left intact. Only bony concha was removed. Removal of bony concha allows the inferior turbinate to lateralise and shrink.

There was no recurrence of nasal obstruction and other signs and symptoms in present study.

The mean age of 114 patients included in the analysis was 29.63. This study included 50 females and 64 males and each group consists of 38 patients. Neither the difference in ages nor the gender composition among the group was statistically significant. Three patients from PIT and 5 patients from SMD group had nasal obstruction or recurrence after six months. Group ITBR had no nasal obstruction after six months. Compilations like synechiae, recurrence were 7.89% in PIT and in SMD group 13.15%.

Success rate in this study was as follows:
SMD - 86.85%
PIT - 92.11%
ITBR - 100%

CONCLUSION
In this study, three surgical methods for inferior turbinate reduction were compared to know the success rate and complications. It was found that ITBR is superior with 0% recurrence against 7.89% for partial inferior turbinectomy group and 13.15% submucosal diathermy group respectively. Chronic nasal obstruction secondary to allergic rhinitis is a global problem and it increases with industrialisation and urbanisation. Chronic rhinitis causes permanent thickening of the turbinates and if it is refractory to medical line of management then the treatment of choice is surgery.
REFERENCES

