ROLE OF PLASMA N-TERMINAL PRO-BRAIN NATRIURETIC PEPTIDE (NT-PRO-BNP), A DIAGNOSTIC AND PROGNOSTIC BIOMARKER OF ACUTE DYSPNOEA OF CARDIAC DISEASES

Sarat Chandra Singh1, Madhusmita Patnaik2, Srikant Kumar Sahoo3, Gautam Patnaik4

1Assistant Professor, Department of General Medicine, SCB Medical College, Cuttack, Odisha.
2Assistant Professor, Department of General Medicine, SCB Medical College, Cuttack, Odisha.
3Junior Resident, Department of General Medicine, SCB Medical College, Cuttack, Odisha.
4Research Associate, SCMM, JNU, Delhi.

ABSTRACT

BACKGROUND
Early detection and accurate diagnosis of heart failure remain a huge clinical challenge in patients with acute dyspnoea of various aetiologies. Different biomarkers of left ventricular dysfunction are being studied to differentiate acute cardiogenic from non-cardiogenic dyspnoea. Amongst those, Brain Natriuretic Peptide (BNP) is an important biomarker for diagnosing acute stage of cardiac dyspnoea.

The aim of this study is to assess the Plasma N-Terminal Pro-Brain Natriuretic Peptide (NT-ProBNP) level in acute dyspnoea of various aetiologies and to establish the diagnostic or prognostic value of plasma NT-ProBNP in acute dyspnoea of cardiac diseases.

MATERIALS AND METHODS
In our study, we have taken 84 cases of acute dyspnoea. The acute dyspnoea above 15 years of age were included in the study. Whereas dyspnoea due to chest trauma, renal insufficiency (serum creatinine > 2.5 mg/dL), previously known as valvular heart diseases and severe coronary ischaemia identified as > 0.1 MVST-segment elevation or ST depression on 12-lead ECG were excluded from the study. After taking patient’s history, the clinical examination with routine blood test, electrocardiography and chest x-ray were done. In addition, blood sample was collected for NT-ProBNP measurement.

RESULTS
In our study group, out of 84 cases Male = 55 (65.4%) and Female = 29 (34.6%). Among those cases 40 (47.6%) had acute cardiac dyspnoea, whereas 44 (52.4%) had non-cardiac dyspnoea. The mean ± SD NT-ProBNP concentration of cases with acute cardiac dyspnoea was (4539.7 ± 4342.9 pg/mL), which was significantly higher than the cases with non-cardiac dyspnoea (136.6 ± 94.7 pg/mL), (P < 0.00001). On the evaluation of acute heart failure according to NYHA (New York Heart Association classification), 44 (52.4%) had NYHA Class-I symptoms, 3 (7.5%) had NYHA Class-II symptoms, 10 (25%) had Class-III symptoms and 27 (67.5%) had Class-IV symptoms that demonstrate the significant relationship of NT-ProBNP of NYHA symptom severity with analysis using ANOVA (P < 0.00001). The median NT-ProBNP level was 150 pg/mL (IQR- 713 pg/mL) in patients with left ventricular ejection fraction (LVEF) > 50% and 4580 pg/mL (IQR- 3180 pg/mL) in those with LVEF < 50% (P < 0.00001).

CONCLUSION
The serum NT-ProBNP measurement is a useful parameter for diagnosing cardiac causes of dyspnoea and also acute heart failure as per NYHA class. It can be used for early detection and management of acute heart failure.

KEYWORDS
Plasma N-Terminal Pro-Brain Natriuretic Peptide, Acute Dyspnoea, Coronary Ischaemia, Valvular Heart Disease.

Biomarkers of left ventricular dysfunction are being studied to differentiate cardiogenic from non-cardiogenic dyspnoea. Brain Natriuretic Peptide (BNP) is a leading biomarker. (1) The BNP is a group of Natriuretic peptides that are involved in the regulation of diuresis, which antagonises the vasoconstrictor effects of the renin-angiotensin-aldosterone system (RAAS). (2)(3) BNP is produced by myocytes in response to increased left ventricular wall stretch. (4) It is derived from an intracellular 108 amino acid precursor protein, which is cleaved into 2 fragments and released by myocytes yielding N-Terminal Pro-Brain Natriuretic Peptide (NT-ProBNP), i.e. 1-76 amino acids inactive form and BNP i.e. 77-108 amino acids active form. (1)(2)(3) A close correlation exists between these peptide levels. However, in patients with left ventricular dysfunction, the proportional and absolute increase of NT-ProBNP exceeds that of BNP. (4)

NT-ProBNP has longer half-life (approximately 60 - 120 mins) than BNP (approximately 20 mins), which increases
At the end of the assay, the results were automatically calculated by the instrument in a relation of two calibration curves corresponding to the two detection steps. A fluorescence threshold value determined the calibration curve to be used for each sample. The results were then printed out.

Statistical Analysis

All results for continuous variables were expressed as means ± SD (standard deviation). However, since the distribution of NT-ProBNP was skewed, therefore median values with IQR were also considered. This is a cross-sectional study designed to know the plasma NT-ProBNP relation with the different types of acute dyspnoea, left ventricular ejection fraction, death and survival. The Mann-Whitney test were done for analysis of data between continuous variables. The analysis is done using ANOVA (Analysis of Variance) to evaluate the NT-ProBNP with different classes of NYHA severity. The difference between mean values were evaluated with unpaired T-test. To compare the patient’s characteristics defined by the groups with low and high levels of NT-ProBNP, we used the Fisher’s exact test. Diagnostic statistics used to compare specificity and sensitivity between two diagnostic tests has been illustrated through ROC (Receiver Operating Characteristic) curves. The NT-ProBNP detection using ROC platform makes testing accessible to health care persons. A ‘p’ value < 0.05 was considered statistically significant. Analysis of the data was done using a software SPSS system 16.0. Microsoft word and excel had been used to generate graphs and tables.

RESULTS

84 patients were included in the study, out of which 55 (65.4%) were male and 29 (34.6%) were females. The age of the patients studied was above 15 years with 24 (28.57%) cases in the age group 56 - 65 years, 16 (19.04%) were in 15 - 25 years and 3 (3.57%) cases were above 76 years. Total cases were categorised into cardiac and non-cardiac causes of acute dyspnoea. Out of that, cardiac dyspnoea was 47.6% and non-cardiac dyspnoea was 52.3% in Table 1.

<table>
<thead>
<tr>
<th>Types</th>
<th>Group-A: Patients of dyspnoea of Cardiac origin: 40 (47.6%)</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>26 (30.95%)</td>
<td>14 (16.67%)</td>
<td></td>
</tr>
<tr>
<td>Group-B: Patients of dyspnoea of Non-Cardiac origin: 44 (52.3%)</td>
<td>29 (65.9%)</td>
<td>15 (34.1%)</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Distribution of Cases between Groups of Cardiac and Non-Cardiac Causes of Dyspnoea

Among the cardiac diseases presenting acute dyspnoea, cardiomyopathy was having highest median plasma NT-ProBNP level of 729.33 pg/mL (IQR=2578 pg/ mL) and lowest value for patient of thyrotoxicosis heart failure 566 pg/mL (IQR= 0). Among all non-cardiac causes, acute severe asthma patients had highest median plasma. NT-ProBNP level was 158.0 pg/ mL (IQR=152.0 pg/ mL) and lowest for pneumothorax57.0 pg/ mL (IQR= 0).

This study revealed that the mean ± SD plasma NT-ProBNP concentration among patients of cardiac causes of dyspnoea was 4539.7 ± 4342.9 pg/ mL, which was significantly higher than the patients of non-cardiac conditions of dyspnoea where mean ± SD NT-ProBNP was 136.6 ± 94.7 pg/mL. This difference was statistically significant (P ≤ 0.00001). Table-2 and Data-1 are showing these differences.
On analysis using ANOVA (Analysis of Variance) of different symptom severity based on New York Heart Association (NYHA) Classification I-IV of dyspnoea with mean ± SD, NT-ProBNP levels had evaluated.

The ANOVA of mean ± SD NT-ProBNP values with NYHA-I Class were 136.6 ± 94.7411 pg/mL, NYHA-II 1058.66 ± 165.9076 pg/mL, NYHA-III 2754.40 ± 2143.5586 pg/mL and NYHA-IV 5587.7 ± 4788.9649 pg/mL, which were statistically significant (P < 0.00001). This finding suggests plasma mean ± SD NT-ProBNP value had the definite relationship with NYHA symptoms severity of the cardiac diseases. The results show this difference in Table 3.

<table>
<thead>
<tr>
<th>Groups</th>
<th>No. of Cases</th>
<th>Mean ± SD</th>
<th>F-Ratio</th>
<th>P-Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>NYHA-I</td>
<td>44</td>
<td>3136.6± 94.7411</td>
<td>21.06702</td>
<td><0.00001(S)</td>
</tr>
<tr>
<td>NYHA-II</td>
<td>3</td>
<td>1058.66± 165.9076</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYHA-III</td>
<td>10</td>
<td>2754.40± 2143.5586</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYHA-IV</td>
<td>27</td>
<td>5587.7± 4788.9649</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. ANOVA of Plasma NT-proBNP Values in Patients of Cardiac causes of Dyspnoea according to NYHA (New York Heart Association Classification of Dyspnoea)

Median NT-ProBNP values of patients were having LVEF <50% in left ventricular systolic dysfunction was 4580 pg/mL (IQR- 3180 pg/ mL) and LVEF > 50% in left ventricular diastolic dysfunction was 150 pg/ mL (IQR- 713 pg/ mL) of both cardiac and non-cardiac acute dyspnoea correlation was statistically significant P < 0.00001. Table 4 is showing these levels.

Receiver operating characteristic (ROC) curve for NT-ProBNP had shown plasma NT-ProBNP values of 425.00 pg/mL was the sensitivity of 97.5% and specificity of 97.7%, which was superior to other value in distinguishing cardiac and non-cardiac causes of acute dyspnoea. This is shown in Graph-1.

ROC curve was showing the plasma NT-ProBNP values of 888 pg/ mL with the sensitivity of 66.7% and specificity of 59.3% for NYHA-II and for NYHA-III, it was 507.50 pg/ mL with 90% sensitivity and 61.8% specificity. This is shown in Graph 2.
ROC curve comparison of NT-ProBNP versus clinical judgment for diagnosis of cardiac dyspnoea showed that NT-ProBNP testing was superior to those of clinical judgment with a significantly greater area under the curve (0.94 vs. 0.91, P=0.008). This is shown in Graph 4.

Out of 84 cases 6 patients (7.1%) died during their stay in the hospital, 4 cases because of heart failure and 2 due to the non-cardiac cause. Among those who were dead, their median plasma NT-ProBNP level was 4420 pg/mL (IQR=7810) compared to 317.5 pg/mL (IQR=2894) from those who survived (P<0.15). The results are shown in Table 5.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>No. of Cases</th>
<th>Median NT-ProBNP value (pg/mL)</th>
<th>IQR</th>
<th>Z-Score</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death (In-Hospital)</td>
<td>6</td>
<td>4420</td>
<td>7810</td>
<td>1.4242</td>
<td>p= 0.15</td>
</tr>
<tr>
<td>Discharged</td>
<td>78</td>
<td>317.5</td>
<td>2894</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NS- Non-Significant

Table 5. Comparison between Median Plasma NT-ProBNP Values between Patients of In-Hospital Death and Survivor

DISCUSSION

In the present study, out of 84 cases 64.5% were male and 34.6% were female and the majority of cases belonged to the age group of 56 - 65 years. The study by Januzzi et al in PRIDE study and by Domingo A et al was consistent with our study.(3,6) Total cases were categorised into cardiac and non-cardiac causes of acute dyspnoea. Cardiac dyspnoea were 47.6% and non-cardiac dyspnoea were 52.3% from Table 1. Study of Januzzi et al in PRIDE study, Domingo A et al, Zhu Y et al and Berdague P et al also had categorised the cases in a similar way.(3,6,7,8) In our study, among the cardiac diseases presenting with acute dyspnoea of cardiomyopathy were having highest median plasma NT-ProBNP level of 7293.33 pg/mL (IQR=2578 pg/mL) and lowest value for patients of thyrotoxicosis heart failure of 56.6 pg/mL (IQR=0). All non-cardiac causes acute severe asthma patient’s plasma NT-ProBNP level was highest, i.e. level of 158.0 pg/mL (IQR=152.0 pg/mL) and lowest for pneumothorax of 57.0 pg/mL (IQR=0). Similar results were seen by Zanuzzi et al.(3)

In this study, mean ± SD plasma NT-ProBNP values in cardiac dyspnoea patients were 453.9 ± 434.2 pg/mL and 136.6 ± 94.7 pg/mL in non-cardiac dyspnoea patients. This difference is statistically significant (P value ≤ 0.00001). Earlier studies by Januzzi et al in PRIDE study, Berdague P et al, Moe et al, Zhu Y et al and Januzzi et al in ICON study had shown high plasma NT-ProBNP in cardiac dyspnoea and low
in non-cardiac dyspnoea patients\(^{(3,7,8,9,10)}\) as presented from Table 2 and Data 1. On analysis using ANOVA (Analysis of Variance) of mean ± SD NT-ProBNP levels with the symptom severity based on NYHA Classification I - IV values with NYHA-I Class was 136.6 ± 94.7411 pg/ mL, NYHA-II - 1058.66 ± 165.9076 pg/ mL, NYHA-III - 2754.4 ± 2143.5586 pg/ mL, NYHA-IV - 5587 ± 4788.9649 pg/ mL had evaluated and P value < 0.00001, which were statistically significant. This finding suggests plasma mean ± SD NT-ProBNP value had the definite relationship with NYHA symptom severity of the cardiac diseases. The results show this difference in Table 3. Similar results were established by Januzzi et al in PRIDE study and ICON study.\(^{(3,10)}\)

In our study, among the cardiac dyspnoea 21 cases were left ventricular systolic dysfunction <50% (LVEF <50%) and 63 cases were having left ventricular diastolic dysfunction ≥50% (LVEF ≥50%). The median NT-ProBNP values of patients were having LVEF <50% in Left ventricular systolic dysfunction of 4580 pg/ mL (IQR - 3180 pg/ mL) and LVEF ≥50% in Left ventricular diastolic dysfunction of 150 pg/ mL (IQR - 713 pg/ mL) and the correlation was statistically significant P < 0.00001. Table 4 is showing these values. This finding was consistent with an earlier study by O’Donoghue et al.\(^{(11)}\)

Receiver operating characteristic (ROC) curve for NT-ProBNP was showing plasma NT-ProBNP values of 425.00 pg/mL were the sensitivity of 97.7% and specificity of 97.5%, which was superior to other values in distinguishing between cardiac and non-cardiac causes of acute dyspnoea. This result was consistent with an earlier study by Januzzi et al.\(^{(3)}\) The ProBNP investigation of dyspnoea in the emergency department (PRIDE study) was showing plasma NT-ProBNP level <300 pg/g mL was optimal to rule out acute Heart failure. Domingo A et al, Bayes-Genis A et al, Hobbs FD et al and Wright et al studies were showing high cut-off values of plasma NT-ProBNP > 900 pg/mL.\(^{(12)}\) This was explained that these studies were undertaken among the elderly age groups (Mean age ± SD= 74 ± 11 yrs) as compared to our study (Mean age ± SD= 46 ± 30 yrs)\(^{(6,12,13,14)}\) from Graph-1.

ROC curve was showing the plasma NT-ProBNP values of 888 pg/ mL with the sensitivity of 66.7% and specificity of 59.3% for NYHA-II and for NYHA-III, it was 507.50 pg/ mL with 90% sensitivity and 61.6% specificity. ROC curve had shown NT-ProBNP values of 375.00 pg/mL with the sensitivity of 96.3% and specificity of 83.7% in NYHA-IV symptoms. This revealed that plasma NT-ProBNP values were more specific and sensitive in determining the severity of Dyspnoea grades. These results were consistent with earlier studies by Januzzi et al and Wang LL et al\(^{(3,15)}\) from Graph 2 and Graph 3.

ROC curve comparison of NT-ProBNP versus clinician estimated likelihood of initial diagnosis of cardiac causes of dyspnoea had shown results of NT-ProBNP testing which was superior to those of clinical judgement with a significantly greater area under the curve (0.94 vs. 0.91, P= 0.008). The area under the curve from NT-ProBNP testing plus clinical judgement were superior to each diagnostic modality from Graph 4. A similar observation had shown in PRIDE study of Januzzi et al.\(^{(3)}\) In this study those patients died in hospital, their median plasma NT-ProBNP level was 4420 pg/mL (IQR-7810) as compared to 317.5 pg/mL (IQR-2894) of those who survived. The difference between median NT-ProBNP values was not statistically significant (P < 0.15) in Table 5. However, in ICON study (Januzzi et al 2006), Harrison et al and Doust et al 2005 observed high NT-ProBNP levels had the worse prognosis of patients.\(^{(16,16,17)}\) This discordance may be due to our small samples and follow-up for a short duration.

CONCLUSION

This study shows that a single measurement of NT-ProBNP on admission can provide independent diagnostic values for differentiating cardiac from non-cardiac causes of acute dyspnoea. High levels of plasma NT-ProBNP values are more specific and sensitive in determining the severity of dyspnoea and also are associated with a significant rise in mortality risk. It represents a useful biochemical tool for the rapid and reliable recognition of cardiac involvement in patients who are presenting with acute dyspnoea. Plasma NT-ProBNP can facilitate the diagnosis and also guide therapy as its highest values are directly related to more advanced NYHA classes and to the poor prognosis. The utility of plasma NT-ProBNP level can reduce the time to start the most appropriate therapy, reduces the need for hospitalisation and intensive care management. Further research on this biomarker would be likely to identify various stages during the evaluation of heart failure ranging from their use for screening, diagnosis, determining prognosis and guiding management.

REFERENCES

