EXTERNAL DACRYOCYSTORHINOSTOMY IN PAEDIATRIC PATIENTS AND SURGICAL OUTCOMES- OUR EXPERIENCE IN A GOVERNMENT TEACHING HOSPITAL

Raman Yenugandula1, Prameela2, Anand Kumar3

1Associate Professor, Department of Ophthalmology, S. D. Eye Hospital, Hyderabad, Telangana, India.
2Assistant Professor, Department of Ophthalmology, S. D. Eye Hospital, Hyderabad, Telangana, India.
3Assistant Professor, Department of Ophthalmology, S. D. Eye Hospital, Hyderabad, Telangana, India.

ABSTRACT

BACKGROUND
In paediatric group patients, management of Epiphora is a stepwise process starting with probing at the age of 9-12 months and it results in high cure rates. For persistent watering and discharge following repeated probing, more invasive procedures like Balloon Dacryocystoplasty or external and endonasal Dacryocystorhinostomy are required in older children. Our study was designed to evaluate the indications, intra operative events and surgical outcomes of external dacryocystorhinostomy in children.

Design- A descriptive study was carried out in the Department of Paediatric Ophthalmology at Sarojini Devi Eye Hospital including children undergoing external Dacryocystorhinostomy in the year 2017 with a minimum Post Op follow up of six months.

MATERIALS AND METHODS
The children aged between 7-14 years attending the OPD of Paediatric Ophthalmology were recruited for study numbering 50. The data collected regarding age, sex of the patients, side of the obstruction, indication for surgery, intra operative events, follow up period, post-operative complications and post-operative results. In our study, follow up period was at least 6 months. Data of the 50 patients are statistically analysed and presented.

RESULTS
In our study, the mean follow up period was 8.78 months and age of the patients ranges from 7 years to 14 years with a mean of 8.71 years. The complication rate is low as successful outcomes seen in 47 cases (94%) against failed patency in two cases (4%) and in 2% cases there is partial patency resulting in occasional watering.

Incidence in males was slightly higher (60%) than in females (40%).

CONCLUSION
External DCR is a cost effective and efficient surgical treatment for Congenital NLDO or acquired lacrimal obstruction causing epiphora in children.

KEY WORDS
Congenital Nasolacrimal Duct Obstruction, External Dacryocystorhinostomy, Endonasal Dacryocystorhinostomy, Paediatric.


Neonates aged around 9 to 10 months are taken for nasolacrimal probing as it offers high cure rates but with increasing age the success rate may be reduced.[2,3,4]

Generally, if obstruction is at the level of Hasner’s valve, probing leads to good outcomes. In the older children the obstruction may be at the lacrimal sac-lacrimal duct intersection which results in poor outcomes after nasolacrimal probing.[5]

Generally nasolacrimal intubation is recommended when epiphora persists even after two probing.[6]

This procedure yields good results (80% of resolution and symptomatic improvement) if performed in children to resolve watering after two unsuccessful lacrimal probing.[7]

For persistent epiphora following probing, needs more intensive procedures like intubation, balloon dacryoplasty and external dacryocystorhinostomy.

The above-mentioned procedures are widely practiced. Recent advances like endonasal dacryocystorhinostomy are added in the management strategies.[6]

But still in the majority of the Tertiary Care Eye Hospitals run by the government, charity hospitals and hospitals run by the individual ophthalmologists because of cost constraints, External Dacryocystorhinostomy is the preferred procedure.
This procedure needs less instrumentation and at the same time success rates are high. Our Study is designed to evaluate the intra operative complications surgical time and surgical outcomes of external DCR in paediatric patients at a tertiary care government medical college eye hospital.

MATERIALS AND METHODS
This descriptive study was conducted in the department of paediatric ophthalmology at Sarojini Eye Hospital, Hyderabad, Telangana State, India after getting approval from the institutional medical ethics committee. Our study was conducted between Jan 2017 to February 2018.

Consecutive cases of congenital dacryocystitis with different clinical profiles like dacryocystitis, lacrimal and nasal fistula were taken.

The inclusion criterion in the above mentioned clinical cases was patients aged between 7-14 years.

Acquired causes of epiphora like facial trauma are excluded from the study.

The follow up post-operative schedule is first post op day, first week, first month, 3 months and 6 months. All cases have completed a minimum follow up of six months.

Each time we have concentrated on the symptoms like watering and signs like inflammation in the wound area.

Lacrimal syringing was carried out to assess the patency of the rhinostomy tract.

Data of all patients aged less than 14 years included in the study was analysed.

Regarding age, sex, clinical presentation, intra operative events, surgical time, post-operative results like patency, cure of symptoms, reported complications and patient satisfaction were considered in the study.

The criteria for the success of surgery were disappearance of tearing, discharge and the resolution of lacrimal mucocoele in addition to patent lacrimal passages on syringing.

All patients included in the study were taken for external DCR under general anaesthesia. For all the cases, ENT surgeon's opinion was taken pre-operatively to rule out clinical conditions like nasal polyps, rhinitis and deviated nasal septum.

One day prior to surgery, patients were kept on nasal decongestant drops and systemic antibiotics.

We especially investigated all the cases for bleeding disorders by obtaining clotting time and bleeding time and also obtained fitness from the anaesthesiologists.

Standard surgical technique of external DCR was performed in all the patients by 3 surgeons (YR, AK, RP).

An incision of 1.5 cm length was marked over the anterior lacrimal crest extending 4 mm above and 10 mm below in a curvilinear fashion, 3 mm away from the medial canthus. (Fig. 1 & 2)

The nasal mucosa was anaesthetised, and vasoconstrictor applied by placing the nasal pack which is soaked with the above medicines.

Fifteen minutes before start of surgery, Ethamsylate intra muscular injection was given which will help in controlling intra operative bleeding.

Once the skin incision is created, the Orbicularis muscle fibres were separated with blunt dissector and periosteum is exposed overlaying the anterior lacrimal crest and also above and below.

We used Muller's Self retaining Haemostatic Retractor and Catapaw Retractors to expose the lacrimal sac and the floor.

Lacrimal sac is retracted laterally with the help of sac retractor and periosteum is dissected off the floor of the lacrimal sac and as well as lacrimal bone.

Meanwhile we maintain strict haemostasis to visualize the structures.

The osteotomy is created in the floor of lacrimal sac mainly in the thin lamina papyracea and the bone punch is used for the purpose.

Once the osteotomy is created it is enlarged to the size of nearly 9-10 mm in diameter.

During the entire procedure to maintain visualization of the structures, suction cannula is used to prevent pooling of blood in the event of bleeding (fig.3)

More frequently we used cottonoids and packing to control capillary bleeding.

Osteotomy is made between anterior and posterior lacrimal crests and nasal mucosa is identified.

The Nasal mucosa is opened by a h shaped incision and both anterior and posterior flaps are created. Next we come to negotiate the lacrimal sac, a vertical incision is made along the entire length of fundus and body, any contents are evacuated.

In our procedures we partially excised both posterior flaps of the lacrimal sac and nasal mucosa.

Both the anterior flaps of the lacrimal mucosa and nasal flaps are sutured by using interrupted 6/0 vicryl sutures (fig-4). After completing the flap suturing, orbicularis muscle fibres closed with 6/0 vicryl sutures (fig-5) and also the skin flaps. (fig. 6)

In two cases we used silicon tubes to intubate the lacrimal passage system.

Silicon tubes were tied together with 6/0 prolene and sutured to the lateral nasal wall.

These tubes were removed after four weeks. For rest of all cases no intubation was done.

Immediate post op day along with wound dressing lacrimal syringing was done. Post op followup was according to the prescribed follow up schedule.

In the post op day topical anti biotic drops are prescribed for a period of 1 month and systemic antibiotics given for one week.

Nasal decongestant drops for instillation and systemic anti-inflammatory drugs prescribed for five days.

Patients’ attendants were clearly explained not to blow the nose with an instruction of emergency visit to the hospital in case of Bleeding from the nose on the operated side.

All the cases have completed a minimum follow up of 6 months from the day of surgery.

The data of the cases was collected and subjected to statistical analysis using Microsoft Office and presented in the study.
Figure 1. Identification and Dissection of the Medial Palpebral Ligament exposes Lacrimal Sac

Figure 2. Preparation of the Anterior Flaps of Lacrimal Sac and Nasal Mucosa

Figure 3. Suction Cannula used to prevent Pooling of Blood

Figure 4. Interrupted Vicryl Sutures used for Anastomosis of the Anterior Flaps

Figure 5. Suturing of the Orbicularis Muscle Fibres
RESULTS

The demographic characteristics of all patients, clinical profiles, Intra operative complications, surgical time and post-operative results are shown in the different tables.

<table>
<thead>
<tr>
<th>Table 1. Indications for External DCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>No.1</td>
</tr>
<tr>
<td>No.2</td>
</tr>
<tr>
<td>No.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2. Demographic Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (In Years)</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Mean ± SD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sex of the Patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
</tr>
<tr>
<td>Females</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operated Side (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right Side</td>
</tr>
<tr>
<td>Left Side</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Follow Up Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Mean ± SD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3. Intra Operative Complications and Surgical Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Successful Outcomes</td>
</tr>
<tr>
<td>Failed patency</td>
</tr>
<tr>
<td>Patency present with occasional discharge</td>
</tr>
</tbody>
</table>

In our Study, the mean followup period was 8.78 months and age of the patients range from 7 years to 14 years with a mean of 8.71 years. Male children are more (60%) than female patients (40%), the distribution of patients regarding the side of obstruction is right side (58%) and left side (42%). The complication rate is low as successful outcomes seen in 47 cases (94%) against failed patency in two cases (4%) and in 2% cases there is a partial patency resulting in occasional watering.

DISCUSSION

All the cases presented to us were having persistent watery discharge, some of them even after having repeated lacrimal probing. These cases were taken for external DCR at the least age of 7 years. At our institute, we are not practicing lacrimal intubation because of lack of facilities.

Balloon dacryoplasty is again emerging as a new modality in children aging more than 1 year but results are still controversial.[8,9]

DCR in the paediatric patients is not as predictable as in adults. In children, anatomy of the lacrimal passage is immature and rapidly changing along with a tendency towards vigorous scar tissue growth and closure of the osteotomy.

But adequate osteotomy and good anastomosis yields best results.

Anastomosis must be tension free and adequate. External DCR results in obvious cutaneous scar, when compared with endonasal DCR. The endo DCR is not preferred choice in view of small anatomical dimensions especially the sac and the nasal cavity which hinder easy performance of the procedure, still we need more reports regarding success of endo DCR.

In addition, clinical cases like congenital NLDO, lacrimal mucocele and lacrimal fistula need external DCR. Endo nasal DCR with or without assisted laser needs costly instrumentation and additional training, which may not be affordable in certain institutions. Our main objective of this study is to show the good surgical outcomes using least and cost effective instrumentation.

In our study, the majority (80%) of cases belong to congenital in nature, including NLDO, lacrimal mucocele and lacrimal fistula.

In a study in Nigeria, 88% had congenital NLDO and only 10% had post traumatic lacrimal obstruction.

A Study in Nepal reported the acquired NLDO 63% of cases. Marr and colleagues [10] in their study reported 92% of patients had congenital NLDO and only 8% acquired cases, which is nearly close to our study.

In our study, 68% of cases belong to congenital NLDO with or without prior lacrimal probing and 4% of cases belong to Lacrimal fistula and 8% of cases belong to Mucocele.

In this study, external DCR was performed in 50% of cases of failed lacrimal probing and 18% of cases are previously managed conservatively. The present study achieved overall success rate of 94%.

ungeon's experience, surgical operative. Congenital obstruction causi

REFERENCES

CONCLUSION

REFERENCES


