Study of CBNAAT and Anti-MPT64 Detection in Cytological and Histopathological Material for Early Diagnosis of TB Lymphadenitis

Sumayya1, Kharidehal Durga2, B. S. Nithyananda3, Shahvar Fatima4, A. Krishnaiah5

1Department of Pathology, Osmania General Hospital/Osmania Medical College, Koti, Hyderabad, Telangana, India.
2Department of Pathology, Osmania General Hospital/Osmania Medical College, Koti, Hyderabad, Telangana, India.
3Department of Pathology, Osmania General Hospital/Osmania Medical College, Koti, Hyderabad, Telangana, India.
4Department of Pathology, Osmania General Hospital/Osmania Medical College, Koti, Hyderabad, Telangana, India.
5Department of Pathology, Osmania General Hospital/Osmania Medical College, Koti, Hyderabad, Telangana, India.

ABSTRACT

BACKGROUND
Tuberculosis is primarily a pulmonary disease, but it can affect almost any organ system, with lymph node involvement being the most common form of extrapulmonary tuberculosis and tuberculous pleuritis being the 2nd most frequent extrapulmonary manifestation. Immune-compromising diseases such as HIV, have resulted in increase in the incidence of tuberculous lymphadenitis.

METHODS
This study is a prospective study, which included 80 patients, in the age group of 15-60 years, done over a period of 18 months from November 2016 to April 2018 in Upgraded Department of Pathology, Osmania General Hospital, Hyderabad, a tertiary referral centre for the state of Telangana and various districts of neighbouring states. In the present study, patients who presented with cervical lymphadenopathy as the manifestation of extrapulmonary tuberculosis were included. Cervical lymphadenopathy is the most common presentation of EPTB. Pus from the suspected lymph nodes was aspirated for cytological examination, ZN staining and GeneXpert analysis. Biopsy from the suspected lymph node was obtained and the material processed for CBNAAT, histopathology, Ziehl Neelsen staining and IHC.

RESULTS
CBNAAT was positive in 70 (87.5%) cases on cytological aspirates with 24 (30%) cases showing rifampicin resistance and on biopsy, 64/80 (80%) cases were positive on CBNAAT with rifampicin resistance in 25 (31.25%) cases. IHC with anti-MPT64 antibody was positive in 72 (90%) cases with sensitivity, specificity, positive and negative predictive value of 100%, 97%, 98% and 100% respectively and p value of <0.0001.

CONCLUSIONS
Present study provides the insight for the feasibility of using CBNAAT and IHC as diagnostic techniques for better management of EPTB patients and be useful in settings where culture or higher molecular facilities are not available.

KEY WORDS
Extrapulmonary Tuberculosis, CBNAAT, IHC-Anti-MTB Antibody, BCG Antiserum
Human Tuberculosis is a re-emerging infectious disease and has remained the world’s leading cause of death from a single infectious agent. It is primarily a pulmonary disease, can affect almost any organ system, with lymph node involvement being the most common form of extrapulmonary tuberculosis and tuberculous pleuritis being the 2nd most frequent extrapulmonary manifestation. Immune-compromising diseases such as HIV have resulted in increase in the incidence of tuberculous lymphadenitis. Tuberculous lymphadenitis in cervical region is known as scrufula (WHO, 2015). Tuberculosis is a contagious and infectious disease as M.tuberculosis, usually lasts throughout the life course and determines the formation of tubercles in different parts of the body. M. tuberculosis has the ability to colonise any site in the body and it can affect organs other than lung such as pleura, lymph node, abdomen, skin, genitourinary tract, joints, bones and meninges. According to WHO there were 8.6 million new TB cases in 2012 and 1.3 million TB deaths, 1.4 million TB deaths in 2015, and an additional 0.4 million deaths resulting from TB disease among HIV-positive people.

Extra-pulmonary tuberculosis (EPTB) accounts for 20% (234029 cases out of 1183373) of total burden of tuberculosis globally. It is estimated that approximately 70 million people will die from tuberculosis within the next 20 years and it is because of inadequate measures for the TB control. Diagnosis of tuberculous lymphadenitis has been a permanent challenge, because of its severe social implications and inability to tackle the disease due to inadequate diagnostic measures. For developing countries with large number of cases and financial constraints, identification and diagnosis of Mycobacterium tuberculosis requires rapid and inexpensive diagnostic methods and modalities.

As per WHO, the diagnosis of EPTB should be made based on relevant clinical manifestation, culture positivity, histological features of granulomatous lesion with or without caseation. Granulomatous lymphadenitis can be extensive differential diagnosis for non-infective disorders like sarcoidosis, sarcoid like lymphadenitis and infective conditions like atypical mycobacterial infections, toxoplasma, syphilis, brucellosis, BCG lymphadenitis, lymphogranuloma venereum and fungal infections. In countries with high prevalence, diagnosis on clinical criteria has poor sensitivity and specificity, and confirmation requires demonstration of acid-fast bacilli on ZN staining and/or bacteriological isolation on culture.

Most of the cases of tuberculous lymphadenitis are paucibacillary and Acid-fast bacilli has low sensitivity, as its detection limit is >10^4 bacilli/slide, or 10^4 bacilli per ml and Culture requires a long time of 5-8 weeks to give results, reliance on culture, the gold standard and mainstay of diagnosis often leads to delay, compromising patients care and outcomes. Diagnosis is therefore made on the classical histological changes of chronic granulomatous inflammation suggestive of tuberculosis. Histology remains the most appropriate method till date, but is time-consuming to undertake and establishing a diagnosis of TB with high specificity remains difficult, as it suffers low sensitivity for paucibacillary samples.

METHODS

Present study is a prospective study, in which 80 patients, between age group 15-60 years were selected over a period of 18 months from November 2016 to April 2018 in Upgraded department of Pathology, Osmania general hospital, Hyderabad. Pus was aspirated from patients with suspected lymph nodes, known patients of tuberculous lymphadenitis and treatment defaulters. Excision biopsy of suspected lymph nodes, known patients of tuberculous lymphadenitis and treatment defaulters. Excision biopsy of suspected lymph nodes, known patients of tuberculous lymphadenitis and treatment defaulters. Excision biopsy of suspected lymph nodes, known patients of tuberculous lymphadenitis and treatment defaulters. Excision biopsy of suspected lymph nodes, known patients of tuberculous lymphadenitis and treatment defaulters. Excision biopsy of suspected lymph nodes, known patients of tuberculous lymphadenitis and treatment defaulters. Excision biopsy of suspected lymph nodes, known patients of tuberculous lymphadenitis and treatment defaulters. Excision biopsy of suspected lymph nodes, known patients of tuberculous lymphadenitis and treatment defaulters. Excision biopsy of suspected lymph nodes, known patients of tuberculous lymphadenitis and treatment defaulters. Excision biopsy of suspected lymph nodes, known patients of tuberculous lymphadenitis and treatment defaulters. Excision biopsy of suspected lymph nodes, known patients of tuberculous lymphadenitis and treatment defaulters. Excision biopsy of suspected lymph nodes, known patients of tuberculous lymphadenitis and treatment defaulters. Excision biopsy of suspected lymph nodes, known patients of tuberculous lymphadenitis and treatment defaulters. Excision biopsy of suspected lymph nodes, known patients of tuberculous lymphadenitis and treatment defaulters.

Ethical clearance was obtained from the ethics committee of the institute. Pus aspirated from the lymph node was put in a sterile container and sent for CB-NAAT and the other part was smeared on 3-4 slides. Few smears were fixed in 95% ethyl alcohol for staining with Hematoxylin & Eosin and the other slides were air dried for special stains e.g. ZN stain for AFB etc. On microscopic examination, the cytological findings were classified according to the amount of necrosis, the type of cells and their arrangement into necrotic granulomas, necrotic material showing mainly degenerated neutrophils, lymphocytes and epithelioid cells, and non-necrotic granulomas and AFB detected on ZN staining. For histopathological examination, lymph node biopsy material was obtained. Small part of lymph node tissue was taken and crushed into small pieces, mixed with normal saline in a sterile container and sent for CBNAAT. Remaining specimen was fixed in 10% phosphate buffer formalin overnight for conventional paraffin embedding followed by routine H&E.
staining. Few unstained slides were prepared for Ziehl Neelsen stain by heat carbol fuchsin method.

IHC with anti-MPT64 antibody was done using peroxidase-antiperoxidase method according to the protocol described by BIOCARE. 4-μm thick sections were taken and deparaffinized. Microwave antigen retrieval was done using citrate buffer, pH 6.2, at 750W for 10 mins and endogenous peroxidase activity was inhibited by incubating sections with hydrogen peroxide for 8 minutes. Slides were washed with TBS buffer (9.6 g of Tris Hydroxymethyl methylamine and 86g of NaCl in 1000 ml distilled water). Ph 7.4-7.6. Then slides were treated with primary antibodies – (i) polyclonal anti-BGC, at 1/5000 dilution for 1 hour, (ii) polyclonal anti-MPT64 antibody at 1/250 dilution for 1 hour. Optimal dilutions were determined priorly. The sections were washed again with TBS buffer (9.6 g of Tris Hydroxymethyl methylamine and 86 g of NaCl in 1000 ml distilled water). Ph 7.4-7.6. Sections were incubated with anti-rabbit dextran polymer conjugated to horseradish peroxidase for 45 minutes. Antigen was visualized with 3- amino-9-ethylcarbazol- and hydrogen peroxide containing substrate and counter-stained with haematoxylin.

All incubations are carried out at room temperature and the sections are thoroughly washed in between the incubations. In every experiment, one positive control and two negative controls are included. Mycobacterial antigen staining intensity was evaluated under 40X, total number of epithelioid cells, giant cells and the nucleated cells were evaluated for staining in each granuloma and results were categorized as weak, moderate, and strong staining subjectively.

Statistical Analysis
The data was collected and analysed using standard statistical chi – square test, P < 0.05 was taken as statistically significant. Data was entered in Microsoft excel and analysis was done using SPSS version 22.

RESULTS

In the present study, age of the patients (Table 1) ranged from 12-65 years with mean age of 22.7 years. The maximum number of cases included were in second and third decade of life. There were 48 females and 32 males with male to female ratio of 2:3.

Cytology showed granulomatous lymphadenitis of Koch’s aetiology in 73/80(91.25%) cases and among remaining 7 cases, 3/80(3.75%) cases were diagnosed as granulomatous lymphadenitis of unknown cause, and 4/80(5%) cases as reactive lymphadenitis. AFB by ZN staining were detected in 20/80(25%) cases. CBNAAT was positive in 70/80(87.5%) cases, with rifampicin resistant in 24(30%) cases. Statistical analysis was calculated by using chi square test, p value of <0.05 was considered as statistically significant. CBNAAT was positive in 69 out of the 73 FNAC positive patients. In remaining 07 cases, CBNAAT was positive in 1 case, diagnosed as granulomatous lymphadenitis of unknown aetiology.

None of the ZN smear positive sample, gave negative results on CBNAAT, as well as most of the ZN smear negative samples were positive with CBNAAT, indicating Xpert MTB/RIF assay is highly sensitive and specific technique. On histopathology, both well organised and poorly organised granulomas with necrotic and non-necrotic centers were observed. Typically, well organised granulomas were observed in 72.5% cases and poorly organised granulomas and non-granulomas with only epithelioids were observed in remaining 27.5% cases. Necrosis was shown by 85% of cases.

Most of the cases diagnosed cytologically, also turned out to be granulomatous tuberculuous lymphadenitis on histopathology, 1 out of 3 cases, diagnosed as granulomatous lymphadenitis of unknown aetiology, 2 out of 4 cases of reactive lymphadenitis on cytology were shown to be tuberculuous lymphadenitis on histology. CBNAAT was positive in 64/80 (80%) cases with rifampicin resistance in 25 (31.25%) cases. AFB were detected in 14/80 (17.5%) cases. Initial experiments with anti-MPT64 antibody showed some cross reactivity with adjacent normal lymph node tissue and in negative controls. To enhance the specificity, the anti-MPT64 antiserum was absorbed with anti-BGC serum, which resulted in total removal of signals from adjacent normal tissue. Absorption of anti-MPT64 antiserum enhanced the specificity but did not affect the sensitivity, as there was no difference in the staining intensity in positive controls and lymphadenitis cases.

With absorbed anti-MPT64 antibody 72/80(90%) cases were positive. MPT64 antigen was detected as granular cytoplasmic staining in the positive controls and the granuloma cells in tuberculous lymphadenitis cases. Antigen was mainly detected in epithelioid cells, giant cells and few nucleated cells. Necrotic centers were negative in the majority of cases. The intensity and extent of staining varied. Most of the cells in granulomas were strongly positive (+2 or +3), while few cells showed moderate to weak (+1 or +2) staining intensity. Among 72/80(90%) cases, strong immunoreactivity was seen in 78.8% and moderate to weak positivity in 21.2%. 2 cases of suspected granulomatous lymphadenitis on histology, did not show any staining intensity with IHC and these turned out to be cases of foreign body granuloma and fungal granuloma confirmed by staining with Gomori methenamine silver stain. In these cases, CBNAAT, MPT64 and AFB were also negative.
Extrapulmonary tuberculosis constitutes 20% of burden of TB globally.[7] EPTB being a paucibacillary disease, the number of bacteria are less to be detected and are deep seated in the organs.[8] the diagnosis of EPTB has always been a problem. Further, conventional methods including histology, smear microscopy and AFB detection are cumbersome and never diagnostic, where culture methods are time consuming.

As per WHO, the diagnosis of EPTB should be made on the basis of culture positive specimen or caseating granuloma on biopsy or strong clinical evidence consistent with active EPTB.[10] Routine cytology and histology cannot distinguish between the diseases caused by TB or non-TB mycobacterium, or chronic inflammatory conditions. TB, thus, remains undiagnosed in 20% cases even after multiple biopsies or aspirations.

GeneXpert MTB/RIF assay marks an important development in the field of rapid molecular tubercular diagnostics. This assay was rapidly endorsed by the WHO in December 2010 as a replacement for sputum smear microscopy, in the settings with high rates of HIV associated TB and multidrug resistant TB, particularly for testing sputum samples.[9] Evaluations of this assay has now extended to a variety of non-respiratory clinical samples.

Extrapulmonary TB is far more complex because of diversity of clinical sample types, difficulty in obtaining adequate tissue for analysis and in the extraction of M.tuberculosis DNA from the samples.

With the improvement of nucleic acid amplification techniques in tuberculosis detection, sensitivity of test has been rising and as this multifunctional diagnostic platform is automated and it performs real time PCR, it enables diagnosis of TB and simultaneous assessment of rifampicin resistance to be completed within 2 hours.[10] This test detects DNA specific for mycobacterium tuberculosis by PCR.[11] Genotypic methods have considerable advantages, in terms of scaling up the programmatic management and surveillance of Multi Drug Resistant-TB (MDR-TB), offering quicker diagnosis, standardized testing, the potential for high output and having fewer requirements for ensuring laboratory bio safety.[12]

Singh KG et al, showed out of total 57 cases, FNAC could diagnose tubercular cytology in 47 cases (82.4%) and CBNAAT positive in 44 cases (77%). In remaining 10 patients in whom FNAC was negative for TB cytology, histopathology following excisional biopsy of lymph node was positive for TB lymphadenopathy.[13] CB-NAAT done on those 10 patients before excisional biopsy on FNA sample was positive in only one patient indicating that CB-NAAT is mostly negative for MTB if cytology is also negative for TBLN. This study also shows the use and sensitivity of immunohistochemistry using anti-MPT64 antibody for the diagnosis of tuberculosis in routinely processed, FFPE histological specimens, as the expression of antigens of tubercle bacilli after in vitro culture of the organism on synthetic media are relatively well known. The strength of this technology lies in being robust, readily available in routine surgical pathology laboratories and can detect fragmented tubercle bacilli without intact cell wall.

Compared with ZN staining that has a sensitivity of 10–45% and it requires an intact cell wall, IHC offers a major improvement in diagnostic potential and should be suited for the diagnosis of pauci-bacillary EPTB. Manju R purohit et al in 2017 showed, positive immunostaining with anti-MPT64 was seen as reddish brown granular in the cytoplasm of mononuclear cells and giant cells in all TB specimens and in 1 control specimen, thus yielding a sensitivity of 100% and a specificity of 97%. When a diagnostic validation of immunostaining was performed using PCR as the gold standard, the overall sensitivity, specificity, and positive and negative predictive values for immunostaining with anti-MPT64 were 100%, 97%, 98%, and 100%, respectively.[21]

IHC for tuberculosis has, however, been slow to catch on as a routine diagnostic method in histopathology laboratories probably due to the lack of a specific anti-mycobacterial antibody suitable for all types of tissues and hence the exact diagnostic role of IHC for M. tuberculosis has to be assessed. Present study shows that IHC with anti-MPT64 has better specificity, sensitivity, and predictive values. Anti- MPT64 antibodies also gave sharp and strong signals with clear background making interpretation easier and permitting a more confident diagnosis of M. tuberculosi complex organism.

Molecular diagnostic methods hold the key to the future of better and efficient diagnosis and management of EPTB. CBNAAT (GeneXpert MTB/RIF) assay is an efficient and reliable technique for rapid diagnosis of extrapulmonary TB, with a potential to identify rifampicin resistance. Its simplicity, sensitivity, speed and automation make this technique a very attractive tool for diagnosis of mycobacterium, and can be used for programmatic management and surveillance of MDR tuberculosis. IHC with antibody to MPT64, is a specific and sensitive technique for diagnosis of EPTB, that can be used in routine laboratory. Being specific, anti-MPT-64 would be of value in differentiating M.tuberculosis from other organisms, especially non-tuberculous mycobacteria and other granulomatous inflammations. Present study provides the insight for the feasibility of using CBNAAT and IHC as diagnostic techniques for better management of EPTB patients in settings where culture or molecular facilities are not available.

REFERENCES


