A Prospective Interventional Study to Evaluate the Efficacy of Nepafenac 0.1% for Prevention of Macular Oedema Associated with Cataract Surgery in Patients with Diabetes

Tushar Kumar1, Mohan Lal Pandey2, Kritika Gogia3, Rishabh Rathi4, Astha Patel5, Srujathi Muthamsetty6

1Department of Ophthalmology, Maharishi Markandeshwar Institute of Medical Sciences and Research, Mullana, Haryana, India. 2Department of Ophthalmology, Maharishi Markandeshwar Institute of Medical Sciences and Research, Mullana, Haryana, India. 3Department of Ophthalmology, Maharishi Markandeshwar Institute of Medical Sciences and Research, Mullana, Haryana, India. 4Department of Ophthalmology, Maharishi Markandeshwar Institute of Medical Sciences and Research, Mullana, Haryana, India. 5Department of Ophthalmology, Maharishi Markandeshwar Institute of Medical Sciences and Research, Mullana, Haryana, India. 6Department of Ophthalmology, Maharishi Markandeshwar Institute of Medical Sciences and Research, Mullana, Haryana, India.

ABSTRACT

BACKGROUND
Pseudophakic cystoid macular oedema is a significant cause of suboptimal visual acuity post phacoemulsification. Diabetics are at greater risk of developing PCME following cataract surgery. Topical nepafenac ophthalmic suspension 0.1% is used to prevent inflammation postoperatively. We wanted to study the effect of Topical Nepafenac 0.1% eye suspension on macular thickness following phacoemulsification in patients of diabetes mellitus and correlate the final visual acuity and macular thickness.

METHODS
This prospective interventional study was conducted between January 2018 and May 2019 in the Department of Ophthalmology, MMIMSR, Mullana, Ambala. 100 patients based on the inclusion and exclusion criteria were included in the study and phacoemulsification was done. They were divided into two groups of 50 each. Group 1 received topical Nepafenac 0.1% ophthalmic suspension thrice daily along with the routine post-op medications whereas Group 2 received routine post-op medications. The groups were analysed preoperatively and at 2, 4, 6, 8 weeks postoperatively and their CMT was recorded using a SD-OCT. The change in BCVA was analysed with the help of ETDRS letter chart. The data was entered in Microsoft Excel and analysed using SPSS-PC-20 version. Quantitative data was expressed by mean and standard deviation while qualitative data was expressed as percentage. Difference between the proportions was tested with Chi Square Test or Fisher’s Exact test while difference between quantitative variable between the two groups was tested with students ‘t’ test or Mann Whitney U test. For comparison of quantitative data between more than two groups, ANOVA or Kruskal Wallis ‘H’ test followed by post hoc test was used. A ‘p’ value of less than 0.05 was considered statistically significant.

RESULTS
A lower percentage of patients in Group 1 developed ME relative to Group 2 (2% vs. 8%; p-value= 0.36). The mean CMT was significantly lower in Group 1 at 2 (p-value<0.01), 4 (p-value<0.001), 6 (p-value<0.001) and 8 weeks (p-value<0.001). A greater percentage of patients in Group 1 (60%) experienced a gain of >15 letters as compared to the baseline (p-value<0.01).

CONCLUSIONS
Topical nepafenac helps in preventing macular oedema and improves the mean gain in letters read at 8 weeks of follow up.

KEY WORDS
Pseudophakic Cystoid Macular oedema, Irvine-Gas Syndrome, Nepafenac, NSAIDs
Cataract surgery is a common and effective procedure which can restore the visual deficit related to cataract formation. With the advent of advances in surgical techniques the incidence of complications associated with phacoemulsification has reduced dramatically; however, cystoid macular oedema (CME) presents itself as a significant cause of suboptimal visual acuity. The incidence of pseudophakic cystoid macular oedema is thought to be around 1.17–4.2% of the patients, depending on the definitions and diagnostics modalities used. The incidence of clinically detectable CME following phacoemulsification is thought to be around 0.1% to 2.35%. Whereas when OCT is used for diagnosis, the incidence shoots up to 4% to 11%, some studies have also reported the incidence to be as high as 41%. Macular oedema develops typically 4-12 weeks after surgery in 2% of the patients undergoing uneventful cataract surgery but can be close to 20% when the surgery is complicated by severe trauma to the iris or vitreous loss following rupture of the posterior lens capsule. In majority of the patients CME resolves spontaneously with improvement of visual acuity within 3–12 months. If the oedema is chronic (more than 6-9 months) permanent damage to the photoreceptors with retinal thinning and fibrosis can occur. Fundoscopy is the gold standard in diagnosing pseudophakic CME, but treatment responses would be more conveniently monitored by bio microscopy, visual acuity and OCT. Optical coherence tomography (OCT) is used to obtain high-resolution cross-sectional imaging of the macula. Pseudophakic CME on OCT is characterized by loss of the foveal depression, retinal thickening, and cystic hypo reflective areas within the macula.

We wanted to evaluate efficacy of nepafenac 0.1% in the prevention of macular oedema (defined as ≥30% increase in central subfield macular thickness from baseline) when used for 60 days following cataract surgery in patients with history of diabetes for a minimum of 5 year.

This is a prospective interventional study, which was conducted in the Department of Ophthalmology, MM Institute of Medical Sciences and Research Mullana, Ambala from January 2018 to May 2019. All patients of any gender above the age of 40 years with history of diabetes mellitus for more than 5 years having visually significant cataract requiring surgery during the study period.

Exclusion Criteria
1. Patients younger than 40 years of age.
2. Patients with high myopia.
3. Patients with history of use of steroids, immunosuppressants and NSAIDs 14 days prior to surgery.
4. Patients with known hypersensitivity to any component of study drug. (Based on history)
5. Patients with history of bleeding disorders or patients on anticoagulant therapy.

6. Patients having undergone intraocular surgery, retinal laser photocoagulation, intravitreal injections, and complicated cataract surgery due to loss of vitreous or rupture of the posterior capsule.
7. Patients suffering from uveitis, glaucoma, prostaglandin use or any other ocular pathology that could cause macular oedema.
8. Patients with systemic diseases apart from diabetes.
9. Patients not giving consent.

A total of hundred eyes of hundred patients who were known cases of diabetes mellitus (type 1 & type 2) and fitted the inclusion criteria were selected and phacoemulsification with posterior chamber intraocular lens implantation was done in all the patients, following this they were divided in two groups (1:1). The following data was collected after an informed and written consent was taken from all the patients before surgery in accordance with the declaration of Helsinki. Slit lamp examination of the eye was done and the cornea was assessed for any preoperative pathologies like punctuate keratitis which is a known complication of long duration nepafenac therapy. All patients were given oral antibiotics twice daily for 5 days, oral analgesics were given on need basis, topical antibiotics (eye drop moxifloxacin 0.5%) which were given on 2 hourly basis for the first 7 days and were tapered to 4 times daily for 3 weeks following which it was stopped and topical steroids (ophthalmic suspension of prednisolone acetate 1%) were given 6 times for 2 weeks and then stopped. The patients in Group 1 were given topical nepafenac 0.1% drops thrice daily started one day prior to surgery, on the day of surgery one drop was put in the designated eye 60 minutes before surgery and was continued for the duration of the study. Group 2 consisted of controls and were given all the post-operative medications in the same manner as Group 1 except for topical nepafenac 0.1% for the entire duration of the study. Both groups were assessed for their macular thickness with the help of swept source optical coherence tomography first preoperatively (which was taken as the baseline macular thickness), followed by consecutive assessments at 2 weeks, 4 weeks, 6 weeks and 8 weeks of follow up. Patients presenting with dense cataracts whose macular thickness could not be assessed by an OCT on presentation due to media opacity were subjected to an OCT on the first post-operative day and that macular thickness was considered the baseline value.

OCT used was a spectral domain OCT with a scan speed of 27,000 A-Scans/sec, with A-Scan depth of 2 mm (in tissue), axial resolution of 5µ and transverse resolution of 15µ (in tissue). Slit lamp examination was also carried out to look for any adverse reactions related to the long-term use of the drug on days 1, 7, 14, 30, 45 and 60.

Visual Acuity
ETDRS chart was used to assess the visual acuity in the patients and letters read out were recorded preoperatively and post operatively at 1, 2, 4, 6 and 8 weeks. The baseline visual acuity was considered to be the best corrected visual acuity on the 7th post-op day. As improvement in vision would have been attained by this time and patient would not have developed any macular oedema by that time.
RESULTS

The baseline characteristics in the two groups were broadly similar. More than two third of the study subjects in both the groups were females (70.0%) in group 1 and n=34 (68.0%) in group 2 (p-value=0.82). The mean age of group 1 was 63.75±5.94 years with the majority of the patients falling in the age group of 56-65 years (n=35, 70%) and in group 2 the mean age was 64.82±7.47 years, the majority of the patients belonged to the age group of 56-65 years (n=28, 56%) (p-value=0.43).

At baseline the CMT measurements were 218.92 (±18.41) μm and 220.06 (±10.59) μm in Group 1 and Group 2 respectively. The difference was statistically not significant (p=0.38). At 2 weeks post operatively, they were 224.94 (±17.96) and 236.98 (±12.01) μm. The difference was significant (p=0.01). At 4 weeks postoperatively, they were 233.20 (±20.95) and 250.68 (±21.95) μm. The difference was significant (p=0.001). At 6 weeks postoperatively, they were 233.34 (±20.86) and 251.12 (±23.95) μm. The difference was significant (p=0.001). At 8 weeks postoperatively, they were 232.54 (±22.09) μm and 252.52 (±25.75) μm. The difference was significant (p=0.001).

At 2 weeks, 0 patients (0%) developed macular oedema in Group 1 and Group 2. At 4 weeks, macular oedema was found to be present in 1 patient (2%) in Group 1 whereas it was found in 4 patients (8%) in Group 2 (p-value=0.36).

The mean baseline BCVA based on the ETDRS letters read at 1 week after surgery was 72.26 (±3.53) in Group 1 and 72.38 (±3.12) in Group 2 (p-value=0.85). The mean BCVA based on the number of ETDRS letters read at 2 weeks after surgery was 78.86 (±5.89) in Group 1 and 77.94 (±11.61) in Group 2 (p-value=0.01). The mean BCVA based on the number of ETDRS letters read at 4 weeks after surgery was 81.68 (±6.08) in Group 1 and 77.92 (±12.54) in Group 2 (p-value<0.001). The mean BCVA based on the number of ETDRS letters read at 8 weeks after surgery was 83.98 (±6.64) in Group 1 and 78.48 (±13.06) in Group 2 (p-value<0.001).

At 2 weeks the mean change in number of letters read from ETDRS chart in Group 1 was 4.54 (±2.81) and 1.56 (±4.09) (p-value<0.01). At 4 weeks the mean change in number of letters read from ETDRS chart in Group 1 was 6.00 (±7.21) and 4.66 (±13.09) (p-value=0.72). At 6 weeks the mean change in number of letters read from ETDRS chart in Group 1 was 9.42 (±7.69) and 5.54 (±13.89) (p-value=0.71). At 8 weeks the mean change in number of letters read from ETDRS chart in Group 1 was 11.72 (±8.41) and 6.10 (±14.37) (p-value<0.001).

The BCVA decreased by 5-9 letters in 0 patients in Group 1 and 2 (4%) patients of Group 2. The BCVA decreased by 10-14 letters in 0 patients in Group 1 and 1 (2%) patient of Group 2. The BCVA decreased by ≥15 letters in 1 (2%) patients in Group 1 and 4 (8%) patients of Group 2. There was no change in BCVA in 0 patients in Group 1 and 2 (4%) patients of Group 2 (p-value<0.01).

Table 3. Comparison of BCVA Based on ETDRS Letters Read at Various Follow Up Visits

<table>
<thead>
<tr>
<th>Time</th>
<th>Group 1 (Letters Read)</th>
<th>Group 2 (Letters Read)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=50)</td>
<td>(n=50)</td>
<td></td>
</tr>
<tr>
<td>At baseline</td>
<td>Mean SD</td>
<td>Mean SD</td>
<td></td>
</tr>
<tr>
<td>At 2 weeks</td>
<td>72.26 3.53</td>
<td>72.38 3.12</td>
<td>0.85</td>
</tr>
<tr>
<td>At 4 weeks</td>
<td>76.80 2.64</td>
<td>73.94 2.06</td>
<td><0.01</td>
</tr>
<tr>
<td>At 6 weeks</td>
<td>81.68 6.08</td>
<td>77.92 12.54</td>
<td>0.05</td>
</tr>
<tr>
<td>At 8 weeks</td>
<td>83.98 6.64</td>
<td>78.48 13.06</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Table 4. Changes in BCVA Based on the Number of ETDRS Letters Read from Baseline at Different Follow Up Visits

<table>
<thead>
<tr>
<th>Follow up</th>
<th>Group 1 Change in BCVA from baseline (n=50)</th>
<th>Group 2 Change in BCVA from baseline (n=50)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean SD</td>
<td>Mean SD</td>
<td></td>
</tr>
<tr>
<td>At 2 weeks</td>
<td>4.54 2.81</td>
<td>1.56 4.09</td>
<td><0.01</td>
</tr>
<tr>
<td>At 4 weeks</td>
<td>6.00 7.21</td>
<td>4.66 13.09</td>
<td>0.72</td>
</tr>
<tr>
<td>At 6 weeks</td>
<td>9.42 7.69</td>
<td>5.54 13.89</td>
<td>0.71</td>
</tr>
<tr>
<td>At 8 weeks</td>
<td>11.72 8.41</td>
<td>6.10 14.37</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Table 5. Changes in Best Corrected Visual Acuity after Cataract Surgery at 8th Postoperative Week

<table>
<thead>
<tr>
<th>Letters</th>
<th>Group 1 BCVA (n=50)</th>
<th>Group 2 BCVA (n=50)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>5-9 letters</td>
<td>0 0.0</td>
<td>2 4.0</td>
<td></td>
</tr>
<tr>
<td>10-14 letters</td>
<td>0 0.0</td>
<td>1 2.0</td>
<td></td>
</tr>
<tr>
<td>≥15 letters</td>
<td>0 0.0</td>
<td>2 4.0</td>
<td>0.49</td>
</tr>
</tbody>
</table>

The BCVA decreased by 5-9 letters in 0 patients in Group 1 and 2 (4%) patients of Group 2. The BCVA decreased by 10-14 letters in 0 patients in Group 1 and 1 (2%) patient of Group 2. The BCVA decreased by ≥15 letters in 1 (2%) patients in Group 1 and 4 (8%) patients of Group 2. There was no change in BCVA in 0 patients in Group 1 and 2 (4%) patients of Group 2 (p-value<0.01).
The mean central macular thickness of group 1 and group 2 when, evaluated preoperatively by OCT was statistically insignificant (p-value=0.38). However, when the mean central macular thickness was evaluated not subsequently at the follow up visits, it was found that the increase in the central macular thickness at 2 weeks between the two groups was significantly lesser in Group 1 as compared with Group 2 (p-value<0.01).

On subsequent follow ups at 4, 6 and 8 weeks the central macular thickness was found to have increased by a significantly lesser value in Group 1 as compared to Group 2 (p-values<0.001). We noted that a significantly larger number of patients in Group 1 (n=37 [74%]) returned to within ±10% of the baseline values as compared with Group 2 (n=15 [30%]) at 6 weeks of follow up (p-value<0.01). A similar trend was observed at 8 weeks where a total of 29 patients (78%) in Group 1 returned to within ±10% of the baseline values as compared with a total of 27 patients (54%) in Group 2 with a significant p-value of 0.01. Thus, showing that the changes in macular thickness, when compared with the baseline values were lesser in Group 1 when compared with those of Group 2 at 6 and 8 weeks of follow up. In the study by Ayala Pollack the mean central macular thickness was found to have increased in both the groups, but it was found to be remarkably lesser in the nepafenac group compared with vehicle group.

Rishi Singh reported that a significantly larger percentage of patients belonging to the nepafenac group experienced improvements of 15 letters or more from the post-surgical baseline to day 90 as compared with the vehicle group (56.8% vs. 41.9%; p-value=0.019). At 8 weeks follow up, as the macular thickness had increased much more in Group 2 compared with Group 1, the change in macular thickness was found to be strongly negatively correlated with changes in visual acuity letters read and this correlation was found to be statistically significant in Group 2 (p<0.01) while in Group 1 no statistically significant correlation was observed (p-value=0.67). Thereby suggesting that patients in Group 2 experienced a greater increase in the central macular thickness and were associated with a greater loss of letters read as compared with Group 1 at 8 weeks of follow up. No adverse reactions were noted in patients in Group 1 (n=50) who were treated with topical nepafenac 0.1% ophthalmic suspension at 8 weeks.

The strengths of our study were that it was done prospectively, and the dropout rate was small (6 out of 106) and the limitations were a small sample size due to limited study duration and also a short period of follow up.

Best Corrected Visual Acuity

In our study we found that there was a greater increase in the mean number of letters read off the ETDRS chart at follow up visits at 2, 4, 6 and 8 weeks in patients belonging to Group 1 as compared with patients in Group 2. A statistically significant difference was found to be present at 2 weeks (p-value<0.01), 4 weeks (p-value=0.01) and at 8 weeks (p-value<0.01). Though there was a greater increase in the number of letters read at 6 weeks of follow up in Group 1 as compared with Group 2, the difference between the two groups was considered statistically insignificant (p-value=0.05). We found a significant increase in visual recovery in terms of change in letters read off the ETDRS chart at 2, 4, 6 and 8 weeks of follow up in patients belonging to Group 1 as compared with Group 2. However statistically significant difference between the groups was seen at the 2nd (p-value<0.01) and 8th (p-value<0.01) week of follow up. In our study the mean change in increase in the number of letters read from the baseline to day 60 was significantly greater in Group 1 (11.72±9.41 letters) relative to Group 2 (6.10±14.37 letters) (p-value<0.01). Thereby highlighting the fact that the difference between the two groups is statistically significant. Benefit of using topical nepafenac 0.1% eye drops in speeding up the process of visual recovery is seen. We found that a significantly lesser percentage of patients in Group 2 (n=20, 40%) experienced a gain of 15 letters or more as compared with Group 1 (n=30, 60%). The difference between the two groups was statistically significant at 8 weeks of follow up (p-value<0.01). Ayala Pollack’s study concluded that there was a greater mean increase in change of BCVA as compared with the baseline, in the nepafenac group compared with vehicle group at 90 days of follow up. However, the difference between the two groups was not statistically significant in their study.

Rishi Singh reported that a significantly larger percentage of patients belonging to the nepafenac group experienced improvements of 15 letters or more from the post-surgical baseline to day 90 as compared with the vehicle group (56.8% vs. 41.9%; p-value=0.019). At 8 weeks follow up, as the macular thickness had increased much more in Group 2 compared with Group 1, the change in macular thickness was found to be strongly negatively correlated with changes in visual acuity letters read and this correlation was found to be statistically significant in Group 2 (p<0.01) while in Group 1 no statistically significant correlation was observed (p-value=0.67). Thereby suggesting that patients in Group 2 experienced a greater increase in the central macular thickness and were associated with a greater loss of letters read as compared with Group 1 at 8 weeks of follow up. No adverse reactions were noted in patients in Group 1 (n=50) who were treated with topical nepafenac 0.1% ophthalmic suspension at 8 weeks.

The strengths of our study were that it was done prospectively, and the dropout rate was small (6 out of 106) and the limitations were a small sample size due to limited study duration and also a short period of follow up.

Conclusions

Nepafenac is a safe drug that decreases the occurrence of macular oedema when used after cataract surgery in diabetic patients. Macular oedema was 4 times less common in patients given topical nepafenac as compared to controls. Multicentric
randomized control trials should be done to determine its efficacy and safety.

REFERENCES