Different Causes of Pyrexia of Unknown Origin on Bone Marrow Examination- An Institutional Experience

Ritu Bhagat¹, Roopali Jandial², Vinod Kumar³

¹Department of Pathology, GMC, Jammu, Jammu and Kashmir, India. ²Department of Pathology, GMC, Jammu, Jammu and Kashmir, India. ³Department of Medicine, GMC, Jammu, Jammu and Kashmir, India.

ABSTRACT

BACKGROUND
Petersdorf and Beeson defined pyrexia of unknown origin (PUO) as a complaint with temperature surpassing 38.3 °C, developing over a period of at least three weeks, with no possible opinion reached after one week of inpatient investigation. In the present study, an attempt has been made to find out the causes of PUO based on bone marrow morphology. The range of diseases causing PUO not only seems to be determined by geographical factors, but time also plays a vital role. Bone marrow examination plays an important role in early diagnosis of core cause for PUO and is the best tool for picking haematological and non-haematological disorders in any age group.

METHODS
All patients presenting with classical PUO coming to Government Medical College, Jammu, fulfilling the criteria of Petersdorf RG et al whether inpatient or outpatient over a period of two years were included in this cross-sectional study.

RESULTS
Out of 76 patients, 48 were males and 28 were females. Age of patients varied from 12 years to 70 years. Majority of patients were in the age group of 30-44 years comprising of 45% of total cases. Anaemia was seen in nearly 50% of cases of PUO. Most common diagnosis was neoplastic changes, seen in 20% of patients, 16% cases show megaloblastic changes, iron deficiency was seen 10 % cases, reactive myeloid hyperplasia was seen in 18% cases, haemophagocytosis in 6% cases, 5% cases showed hypocellular marrow. Among infections, malaria was the commonest constituting 5.2% cases. Out of total of 15 cases of neoplastic changes in bone marrow, majority of them were acute myeloid leukaemia seen in 40% cases.

CONCLUSIONS
Bone marrow examination is an important investigation of PUO in arriving at an etiological diagnosis. The most frequent causes of pyrexia of unknown origin observed in children were acute lymphoblastic leukaemia, megaloblastic anaemia and haemophagocytosis, whereas in adults, the main causes were malignancies, megaloblastic anaemia and reactive myeloid hyperplasia. This study sheds light on the current spectrum of diseases causing pyrexia of unknown origin in this region.

KEY WORDS
Pyrexia of Unknown Origin, Bone Marrow Examination, Malignancy, Haematological
Petersdorf and Beeson defined pyrexia of unknown origin (PUO) as a complaint with temperature surpassing 38.3°C, developing over a period of at least three weeks, with no possible opinion reached after one week of inpatient investigation. The range of diseases causing PUO not only seems to be determined by geographical factors, but time also plays a vital role. Bone marrow examination plays an important role in early diagnosis of core cause for PUO and is a best tool for picking haematological and non-haematological disorders in any age group.

In developing countries affordability is a limitation; so bone marrow examination has become the ultimate modality for early diagnosis of pyrexia of unknown origin. Variable response of the bone marrow depends upon aetiology either infective or non-infective, as a result infections and systemic diseases can be studied by analysis of morphology & aetiology and helps in the management of patients with PUO.

This cross sectional study is conducted to find out the spectrum of diseases causing PUO in Jammu region. In present study an attempt has been made to find out the causes of PUO based on bone marrow morphology.

METHODOLOGY

All the patients presenting with classical PUO (pyrexia of unknown origin) coming to Government Medical College, Jammu, fulfilling the criteria of Petersdorf RG et al1 whether inpatient or outpatient over a period of two years were included in this cross sectional study. Detailed clinical history, physical examination and various relevant investigations were noted from the case records. Preliminary investigations include routine urine examination, haemogram, peripheral blood smear for malarial parasites, liver function tests, urea & creatinine, Widal test, Mantoux test and chest x ray. Bone marrow aspiration had been done after taking an informed consent from the patient. Mostly posterior superior iliac spine was the site preferred under local anaesthesia using lumbar puncture needle of 16G. The aspirate smears were stained with Giemsa stain. The parameters studied were cellularity of marrow particle; status of all series of haematopoetic cells increase in plasma cells presence and type of granulomas and any other associated features seen including haem phagocytosis. Got approval from IEC and consent was taken from all patients.

Statistical Analysis

The Statistical Package for Social Science (SPSS) Version 20 will be used for Data Analysis. Mean, median, and SD are used to describe quantitative data. Qualitative data are summarized using frequency and percentage.

RESULTS

A total of 76 patients of PUO who underwent bone marrow aspiration over a period of two years were included in our study. Out of 76 patients 48 were males and 28 were females, with a M: F ratio of 1.7:1. Age of patients varied from 12 years to 70 years. Out of 76 patients, there were 56 adult patients and 09 children (<14 years). Majority of patients were in the age group of 30-44 years comprising of 45% of total cases followed by 15-29 years, 33% cases. Age distribution is shown in table 1.

<table>
<thead>
<tr>
<th>Age Group (Years)</th>
<th>No. of Cases</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-24</td>
<td>25</td>
<td>33</td>
</tr>
<tr>
<td>15-29</td>
<td>24</td>
<td>31</td>
</tr>
<tr>
<td>30-44</td>
<td>44</td>
<td>58</td>
</tr>
<tr>
<td>>44</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>76</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 1. Age Distribution of Patients with PUO

All the patients gave history of prolonged fever ranging in duration from 20 days to 120 days, with an average duration of 30 days. There was history of weight loss in 35 cases, history of diarrhoea in 08 cases, epistaxis seen in 03 cases, history of rash and jaundice seen in 03 cases. Hepatosplenomegaly was seen in 30 cases and lymphadenopathy in 14 cases. Anaemia was seen in nearly 50% of cases of PUO. It was normocytic normochromic in 70% of cases, macrocytic in 16% cases and microcytic hypochromic in 14% cases.

Various morphological changes were seen in patients with PUO on bone marrow aspiration which are shown in table 2. Most common diagnosis was neoplastic changes, seen in 20% of patients, 16% cases show megaloblastic changes, iron deficiency was seen 10% cases, reactive myeloid hyperplasia seen in 18% cases, haemophagocytosis in 6% cases, 5% cases show hypo cellular marrow. Normal marrow findings seen in 53% cases. Among infections malaria was the commonest constituting 5.2% cases, intracellular and extracellular amastigote forms of leishmanial donovani were seen in 4% cases and tuberculosis was seen in 2.6% cases. Also 2.6% cases show features of ITP.

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>No. of Cases</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal marrow</td>
<td>07</td>
<td>5.3</td>
</tr>
<tr>
<td>Neoplastic</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Megaloblastic</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Reactive myeloid hyperplasia</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>Iron deficiency</td>
<td>08</td>
<td>10</td>
</tr>
<tr>
<td>Haemophagocytosis</td>
<td>05</td>
<td>06</td>
</tr>
<tr>
<td>Hypocellular marrow</td>
<td>04</td>
<td>05</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>02</td>
<td>2.6</td>
</tr>
<tr>
<td>Leishmania</td>
<td>04</td>
<td>04</td>
</tr>
<tr>
<td>Malaria</td>
<td>04</td>
<td>5.2</td>
</tr>
<tr>
<td>ITP</td>
<td>02</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Table 2. Morphological Changes in Bone Marrow

Out of total 15 cases of neoplastic changes in bone marrow majority of them were acute myeloid leukemia seen in 40% cases. Acute lymphoid leukemia was the second common diagnosis constituting about 26.6% cases, all of them were seen in children. Chronic myeloid leukemia and multiple myeloma were seen in 13.3% cases each. Myeloid dysplastic syndrome was seen in 6.7% cases. Distribution of malignancy is shown in table 3.

<table>
<thead>
<tr>
<th>Malignancy</th>
<th>No. of Cases</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute lymphoid leukemia</td>
<td>04</td>
<td>26.6</td>
</tr>
<tr>
<td>Acute myeloid leukemia</td>
<td>06</td>
<td>40</td>
</tr>
<tr>
<td>Chronic myeloid leukemia</td>
<td>02</td>
<td>13.3</td>
</tr>
<tr>
<td>Multiple myeloma</td>
<td>02</td>
<td>13.3</td>
</tr>
<tr>
<td>MDS</td>
<td>01</td>
<td>6.7</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 3. Distribution of Malignancies
Among children with PUO most common finding on bone marrow aspiration was acute lymphoid leukemia 04 cases, followed by 03 cases of megaloblastic anaemia and 02 cases of haemophagocytosis.

DISCUSSION

Comparison of patients with pyrexia of unknown origin is difficult because of the large number of possible causes and the influence of numerous factors on the various diagnostic categories. Literature review has shown that bone marrow studies should be considered significant in evaluating patients having long duration of pyrexial illness. Different infections, haematological and nonhaematological malignancies are well differentiated on bone marrow examination, cultures and trephine biopsy results. Though bone marrow aspiration and trephine biopsy is a painful procedure but the diagnosis made by this can be lifesaving in many patients.

A variety of morphologic changes in the bone marrow have been described in various infectious and systemic diseases resulting in PUO. These changes may be features of acute inflammation (interstitial oedema, vascular congestion, haemorrhage, ischemic necrosis or supplicative necrosis) or chronic inflammation with granuloma formation, reactive lymphoid hyperplasia, plasmacytosis, histiocytosis or fibrosis.

In our study, the various causes of PUO were neoplasm, megaloblastic anaemia, iron deficiency anaemia, reactive myeloid hyperplasia followed by haemophagocytosis, hypoplastic marrow, infections like tuberculosis, malaria and leishmaniasis. This is in contrast to other studies where infections constituted the most common cause followed by neoplasm and collagen vascular disease. Another study conducted by Elisabeth et al and Netherlands about PUO in 167 patients, showed infection as a leading cause (26%) followed by neoplasm and non-infectious inflammatory disease (13% & 24% respectively). Miscellaneous causes accounted 5% and 30% of cases were undiagnosed despite every effort.

In our study 20% cases showed haematological malignancies in their bone marrow. Most common neoplasm among them was acute lymphoid leukaemia, 04 cases (26.6%) all cases were seen in children. Second common was Acute myeloid leukaemia 06 cases (40%) followed by Chronic myeloid leukaemia and multiple myeloma 02 cases (13.3%) each and Myeloid dysplastic syndrome constituted only 01 case (6.7%) as shown in table 3. These findings are similar to study done by Haq SA et al where leukaemia constituted the commonest malignancy causing PUO. In a study done by De Kleijn et al which was a prospective multicentric study of 167 cases of PUO, neoplasm constituted 12.6% of total cases. Haematological malignancies were 66.66% of total neoplastic cases. Hodgkin disease was the commonest neoplasm (35.7%). In the study done by Knokaert et al and colleagues, 7% cases were malignancy as a cause of PUO. Haematological malignancy constituted 6 cases (3%) and solid tumours constituted 8 cases (4%). Among the haematological malignancies AM was the commonest, 3 cases (50%). Multiple myeloma constituted only 1 case (16.66%) and Hodgkin disease 2 cases (33.33%). The results of these studies were similar to our study.

In our study, megaloblastic anaemia was the second most common cause (16%) of pyrexia of unknown origin in adult. This was in concordance with study done by Davidson et al where it occurred in 22% of patient, Davidson related the degree and frequency of fever to the severity of anaemia. According to McKee LC et al fever in megaloblastic anaemia is due to increased activity of megaloblastic marrow, and fever was present in about 40% of patients. Studies have shown that however the cause of pyrexia in megaloblastic anaemia is not exactly known but chance could be due to a defect in oxygenation to the regulatory centres of temperature in the brain secondary to anaemia due to vitamin B12 and folate deficiency. There was one other proposed mechanism for pyrexia in megaloblastic anaemia suggesting increased bone marrow activity to be responsible for the pyrexia but the exact mechanism is still not known.

In present study hypocellular marrow is seen in 04 cases (5%). Various drugs, chemicals, toxins, infection, radiation or immune disorders were involved in aetiology of hypocellular marrow. Bone marrow examination alone was not sufficient to point out the cause of hypoplastic marrow. In patients with hypoplastic marrow, bacterial and fungal infections were common secondary to neutropenia. Haemophagocytosis was seen in 05 cases (6%) in the present study. Viruses such as Herpes virus, Parvovirus-B19, CMV, EBV, and HIV are most commonly associated with haemophagocytosis. Although bacteria such as Salmonella, E.coli, Brucella, Legionella, and parasites such as Toxoplasma, Leishmania, and Malaria are also responsible for haemophagocytosis.

Mirdha BR et al identified malaria in the bone marrow of 8 of 120 cases with PUO. Five cases were Plasmodium vivax and 3 cases were Plasmodium falciparum. In present study 04 cases of plasmodium vivax were diagnosed on bone marrow. The commonly used laboratory method for diagnosis of malaria in this part of world is microscopic examination of Romanowsky’s stained thin and thick peripheral blood film. However, its sensitivity is directly proportional to the microscopic skill, screening time and staining. However diagnostic bone marrow examination is often performed when a patient with suspected infection has persistent fever. Malaria surveys based on microscopic examination of the blood film do not always detect chronic, low-grade infection due to either scanty parasitaemia or the patient’s immunity. It is understood that till date complete consensus on routine diagnostic use of bone marrow for the diagnosis of malaria have not been achieved due to its inherent limitations. But, bone marrow examination still has a valuable place in the investigation of patients with suspected malaria.

Reactive myeloid hyperplasia constituted 14 cases (18%). This condition was non-specific morphological change of bone marrow in response to various inflammatory and infective conditions. No specific etiological agents were identified. Bone marrow responds to inflammation by accelerated release of cells from post mitotic reserve pool caused by IL-1 & TNF and associated with an increase in numbers of more immature granulocytes. Severe bacterial infections lead to granulocytic hyperplasia with or without maturing cells. Toxic granules may be evident in the cytoplasm of the granulocytes. Bone marrow culture in association with bone marrow morphology would be more useful in suspected infectious aetiology.

In our study, Leishmaniasis was detected in 03 cases (4%). Study has been carried out showing the sensitivity of bone marrow for the diagnosis of malaria have not been achieved due to its inherent limitations. But, bone marrow examination still has a valuable place in the investigation of patients with suspected malaria.
CONCLUSIONS

Bone marrow examination is an important investigation of FUO in arriving at an etiological diagnosis. The most frequent causes of pyrexia of unknown origin observed in children were acute lymphoblastic leukemia, megaloblastic anemia and haemophagocytosis, whereas in adults, the main causes were malignancies, megaloblastic anemia and reactive myeloid hyperplasia. This study sheds light on the current spectrum of diseases causing pyrexia of unknown origin in this region.

REFERENCES